Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Classifying two-body Hamiltonians for Quantum Darwinism (2405.00805v2)

Published 1 May 2024 in quant-ph and cond-mat.stat-mech

Abstract: Quantum Darwinism is a paradigm to understand how classically objective reality emerges from within a fundamentally quantum universe. Despite the growing attention that this field of research as been enjoying, it is currently not known what specific properties a given Hamiltonian describing a generic quantum system must have to allow the emergence of classicality. Therefore, in the present work, we consider a broadly applicable generic model of an arbitrary finite-dimensional system interacting with an environment formed from an arbitrary collection of finite-dimensional degrees of freedom via an unspecified, potentially time-dependent Hamiltonian containing at most two-body interaction terms. We show that such models support quantum Darwinism if the set of operators acting on the system which enter the Hamiltonian satisfy a set of commutation relations with a pointer observable and with one other. We demonstrate our results by analyzing a wide range of example systems: a qutrit interacting with a qubit environment, a qubit-qubit model with interactions alternating in time, and a series of collision models including a minimal model of a quantum Maxwell demon.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003a).
  2. W. H. Zurek, Nat. Phys. 5, 181–188 (2009).
  3. R. Blume-Kohout and W. H. Zurek, Foundations of Physics 35, 1857 (2005).
  4. R. Blume-Kohout and W. H. Zurek, Phys. Rev. A 73, 062310 (2006).
  5. H. Ollivier, D. Poulin, and W. H. Zurek, Phys. Rev. Lett. 93, 220401 (2004).
  6. H. Ollivier, D. Poulin, and W. H. Zurek, Phys. Rev. A 72, 042113 (2005).
  7. C. J. Riedel and W. H. Zurek, Phys. Rev. Lett. 105, 020404 (2010).
  8. C. J. Riedel and W. H. Zurek, New J. Phys. 13, 073038 (2011).
  9. F. G. S. L. Brandão, M. Piani, and P. Horodecki, Nat. Commun. 6, 7908 (2015).
  10. S. Lorenzo, M. Paternostro, and G. M. Palma, Phys. Rev. Res. 2, 013164 (2020).
  11. W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003b).
  12. M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005).
  13. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
  14. W. H. Zurek, Entropy 24, 10.3390/e24111520 (2022).
  15. W. H. Zurek, Phys. Rev. D 24, 1516 (1981).
  16. W. H. Zurek, Phys. Rev. D 26, 1862 (1982).
  17. M. Zwolak and W. H. Zurek, Scientific Reports 3, 1729 (2013).
  18. J. K. Korbicz, Quantum 5, 571 (2021).
  19. H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).
  20. L. Henderson and V. Vedral, J. Phys. A: Math. Gen. 34, 6899–6905 (2001).
  21. P. Duruisseau, A. Touil, and S. Deffner, Entropy 25, 10.3390/e25121573 (2023).
  22. R. Horodecki, J. K. Korbicz, and P. Horodecki, Phys. Rev. A 91, 032122 (2015).
  23. B. Swingle, Nat. Phys. 14, 988–990 (2018).
  24. A. Touil and S. Deffner, Quantum Sci. Technol. 5, 035005 (2020).
  25. A. Touil and S. Deffner, EPL (Europhys. Lett) , (in press) (2024).
  26. In the qubit model the requirements of Eq. (5) are sufficient to fix both A𝐴Aitalic_A and Sj⁢ksubscript𝑆𝑗𝑘S_{jk}italic_S start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT and derive Eq. (2) once the system Hamiltonian H𝔖subscript𝐻𝔖H_{\mathfrak{S}}italic_H start_POSTSUBSCRIPT fraktur_S end_POSTSUBSCRIPT is given. This is because in the space of qubit operators, only the identity and constant multiples of H𝔖subscript𝐻𝔖H_{\mathfrak{S}}italic_H start_POSTSUBSCRIPT fraktur_S end_POSTSUBSCRIPT commute with H𝔖subscript𝐻𝔖H_{\mathfrak{S}}italic_H start_POSTSUBSCRIPT fraktur_S end_POSTSUBSCRIPT.
  27. W. H. Zurek, Phys. Rev. A 87, 052111 (2013).
  28. F. Casas, A. Murua, and M. Nadinic, Computer Physics Communications 183, 2386 (2012).
  29. C. J. Riedel, W. H. Zurek, and M. Zwolak, New J. Phys. 14, 083010 (2012).
  30. For instance, in Ref. [30] it is shown how the strict adherence to single-branching states can be relaxed to “ϵitalic-ϵ\epsilonitalic_ϵ-δ𝛿\deltaitalic_δ-statements.”.
  31. D. Griffiths, Introduction to elementary particles, 2nd ed. (Wiley-VCH Verlag, Weinheim, Germany, 2008).
  32. To avoid any potential numerical issues, we modify the definition of aτsubscript𝑎𝜏a_{\tau}italic_a start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT and bτsubscript𝑏𝜏b_{\tau}italic_b start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT slightly such that they are not active for the full period over a slightly shrunk interval of (τ−0.01)𝜏0.01(\tau-0.01)( italic_τ - 0.01 ).
  33. This is sufficiently long that some non-negligible information transfer occurs but not so long that any information transfer is complete.
  34. M. Ziman, P. Štelmachovič, and V. Bužek, Open Systems & Information Dynamics 12, 81–91 (2005).
  35. C. Gneiting, A. V. Rozhkov, and F. Nori, Phys. Rev. A 104, 062212 (2021).
  36. S. Campbell and B. Vacchini, Europhysics Letters 133, 60001 (2021).
  37. P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A 34, 3077 (1986).
  38. G. Rempe, F. Schmidt-Kaler, and H. Walther, Phys. Rev. Lett. 64, 2783 (1990).
  39. M. O. Scully, S.-Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989).
  40. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997).
  41. C. M. Caves and G. J. Milburn, Phys. Rev. A 36, 5543 (1987).
  42. D. Karevski and T. Platini, Phys. Rev. Lett. 102, 207207 (2009).
  43. D. Mandal and C. Jarzynski, PNAS 109, 11641 (2012).
  44. D. Mandal, H. T. Quan, and C. Jarzynski, Phys. Rev. Lett. 111, 030602 (2013).
  45. S. Deffner, Phys. Rev. E 88, 062128 (2013).
  46. A. C. Barato and U. Seifert, EPL (Europhysics Letters) 101, 60001 (2013).
  47. A. C. Barato and U. Seifert, Phys. Rev. Lett. 112, 090601 (2014).
  48. A. Chapman and A. Miyake, Phys. Rev. E 92, 062125 (2015).
  49. D. Šafránek and S. Deffner, Phys. Rev. A 98, 032308 (2018).
  50. G. Engelhardt and G. Schaller, New J. Phys. 20, 023011 (2018).
  51. J. Stevens and S. Deffner, Phys. Rev. E 99, 042129 (2019).
  52. O. Abah and M. Paternostro, J. P. Commun. 4, 085016 (2020).
  53. D. Bhattacharyya and C. Jarzynski, Phys. Rev. E 106, 064101 (2022).
  54. U. Korkmaz and D. Türkpençe, Phys. Rev. A 107, 012432 (2023).
  55. S. Deffner and C. Jarzynski, Phys. Rev. X 3, 041003 (2013).
  56. J. Mompart and R. Corbalán, J. Opt. B 2, R7 (2000).
  57. T. P. Le and A. Olaya-Castro, Phys. Rev. Lett. 122, 010403 (2019).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 10 likes.