Classifying two-body Hamiltonians for Quantum Darwinism (2405.00805v2)
Abstract: Quantum Darwinism is a paradigm to understand how classically objective reality emerges from within a fundamentally quantum universe. Despite the growing attention that this field of research as been enjoying, it is currently not known what specific properties a given Hamiltonian describing a generic quantum system must have to allow the emergence of classicality. Therefore, in the present work, we consider a broadly applicable generic model of an arbitrary finite-dimensional system interacting with an environment formed from an arbitrary collection of finite-dimensional degrees of freedom via an unspecified, potentially time-dependent Hamiltonian containing at most two-body interaction terms. We show that such models support quantum Darwinism if the set of operators acting on the system which enter the Hamiltonian satisfy a set of commutation relations with a pointer observable and with one other. We demonstrate our results by analyzing a wide range of example systems: a qutrit interacting with a qubit environment, a qubit-qubit model with interactions alternating in time, and a series of collision models including a minimal model of a quantum Maxwell demon.
- W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003a).
- W. H. Zurek, Nat. Phys. 5, 181–188 (2009).
- R. Blume-Kohout and W. H. Zurek, Foundations of Physics 35, 1857 (2005).
- R. Blume-Kohout and W. H. Zurek, Phys. Rev. A 73, 062310 (2006).
- H. Ollivier, D. Poulin, and W. H. Zurek, Phys. Rev. Lett. 93, 220401 (2004).
- H. Ollivier, D. Poulin, and W. H. Zurek, Phys. Rev. A 72, 042113 (2005).
- C. J. Riedel and W. H. Zurek, Phys. Rev. Lett. 105, 020404 (2010).
- C. J. Riedel and W. H. Zurek, New J. Phys. 13, 073038 (2011).
- F. G. S. L. Brandão, M. Piani, and P. Horodecki, Nat. Commun. 6, 7908 (2015).
- S. Lorenzo, M. Paternostro, and G. M. Palma, Phys. Rev. Res. 2, 013164 (2020).
- W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003b).
- M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005).
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
- W. H. Zurek, Entropy 24, 10.3390/e24111520 (2022).
- W. H. Zurek, Phys. Rev. D 24, 1516 (1981).
- W. H. Zurek, Phys. Rev. D 26, 1862 (1982).
- M. Zwolak and W. H. Zurek, Scientific Reports 3, 1729 (2013).
- J. K. Korbicz, Quantum 5, 571 (2021).
- H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).
- L. Henderson and V. Vedral, J. Phys. A: Math. Gen. 34, 6899–6905 (2001).
- P. Duruisseau, A. Touil, and S. Deffner, Entropy 25, 10.3390/e25121573 (2023).
- R. Horodecki, J. K. Korbicz, and P. Horodecki, Phys. Rev. A 91, 032122 (2015).
- B. Swingle, Nat. Phys. 14, 988–990 (2018).
- A. Touil and S. Deffner, Quantum Sci. Technol. 5, 035005 (2020).
- A. Touil and S. Deffner, EPL (Europhys. Lett) , (in press) (2024).
- In the qubit model the requirements of Eq. (5) are sufficient to fix both A𝐴Aitalic_A and Sjksubscript𝑆𝑗𝑘S_{jk}italic_S start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT and derive Eq. (2) once the system Hamiltonian H𝔖subscript𝐻𝔖H_{\mathfrak{S}}italic_H start_POSTSUBSCRIPT fraktur_S end_POSTSUBSCRIPT is given. This is because in the space of qubit operators, only the identity and constant multiples of H𝔖subscript𝐻𝔖H_{\mathfrak{S}}italic_H start_POSTSUBSCRIPT fraktur_S end_POSTSUBSCRIPT commute with H𝔖subscript𝐻𝔖H_{\mathfrak{S}}italic_H start_POSTSUBSCRIPT fraktur_S end_POSTSUBSCRIPT.
- W. H. Zurek, Phys. Rev. A 87, 052111 (2013).
- F. Casas, A. Murua, and M. Nadinic, Computer Physics Communications 183, 2386 (2012).
- C. J. Riedel, W. H. Zurek, and M. Zwolak, New J. Phys. 14, 083010 (2012).
- For instance, in Ref. [30] it is shown how the strict adherence to single-branching states can be relaxed to “ϵitalic-ϵ\epsilonitalic_ϵ-δ𝛿\deltaitalic_δ-statements.”.
- D. Griffiths, Introduction to elementary particles, 2nd ed. (Wiley-VCH Verlag, Weinheim, Germany, 2008).
- To avoid any potential numerical issues, we modify the definition of aτsubscript𝑎𝜏a_{\tau}italic_a start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT and bτsubscript𝑏𝜏b_{\tau}italic_b start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT slightly such that they are not active for the full period over a slightly shrunk interval of (τ−0.01)𝜏0.01(\tau-0.01)( italic_τ - 0.01 ).
- This is sufficiently long that some non-negligible information transfer occurs but not so long that any information transfer is complete.
- M. Ziman, P. Štelmachovič, and V. Bužek, Open Systems & Information Dynamics 12, 81–91 (2005).
- C. Gneiting, A. V. Rozhkov, and F. Nori, Phys. Rev. A 104, 062212 (2021).
- S. Campbell and B. Vacchini, Europhysics Letters 133, 60001 (2021).
- P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A 34, 3077 (1986).
- G. Rempe, F. Schmidt-Kaler, and H. Walther, Phys. Rev. Lett. 64, 2783 (1990).
- M. O. Scully, S.-Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989).
- M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997).
- C. M. Caves and G. J. Milburn, Phys. Rev. A 36, 5543 (1987).
- D. Karevski and T. Platini, Phys. Rev. Lett. 102, 207207 (2009).
- D. Mandal and C. Jarzynski, PNAS 109, 11641 (2012).
- D. Mandal, H. T. Quan, and C. Jarzynski, Phys. Rev. Lett. 111, 030602 (2013).
- S. Deffner, Phys. Rev. E 88, 062128 (2013).
- A. C. Barato and U. Seifert, EPL (Europhysics Letters) 101, 60001 (2013).
- A. C. Barato and U. Seifert, Phys. Rev. Lett. 112, 090601 (2014).
- A. Chapman and A. Miyake, Phys. Rev. E 92, 062125 (2015).
- D. Šafránek and S. Deffner, Phys. Rev. A 98, 032308 (2018).
- G. Engelhardt and G. Schaller, New J. Phys. 20, 023011 (2018).
- J. Stevens and S. Deffner, Phys. Rev. E 99, 042129 (2019).
- O. Abah and M. Paternostro, J. P. Commun. 4, 085016 (2020).
- D. Bhattacharyya and C. Jarzynski, Phys. Rev. E 106, 064101 (2022).
- U. Korkmaz and D. Türkpençe, Phys. Rev. A 107, 012432 (2023).
- S. Deffner and C. Jarzynski, Phys. Rev. X 3, 041003 (2013).
- J. Mompart and R. Corbalán, J. Opt. B 2, R7 (2000).
- T. P. Le and A. Olaya-Castro, Phys. Rev. Lett. 122, 010403 (2019).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.