Papers
Topics
Authors
Recent
2000 character limit reached

Quantum algorithms for matrix geometric means (2405.00673v2)

Published 1 May 2024 in quant-ph, math-ph, math.FA, math.MP, and math.OA

Abstract: Matrix geometric means between two positive definite matrices can be defined from distinct perspectives - as solutions to certain nonlinear systems of equations, as points along geodesics in Riemannian geometry, and as solutions to certain optimisation problems. We devise quantum subroutines for the matrix geometric means, and construct solutions to the algebraic Riccati equation - an important class of nonlinear systems of equations appearing in machine learning, optimal control, estimation, and filtering. Using these subroutines, we present a new class of quantum learning algorithms, for both classical and quantum data, called quantum geometric mean metric learning, for weakly supervised learning and anomaly detection. The subroutines are also useful for estimating geometric R\'enyi relative entropies and the Uhlmann fidelity, in particular achieving optimal dependence on precision for the Uhlmann and Matsumoto fidelities. Finally, we provide a BQP-complete problem based on matrix geometric means that can be solved by our subroutines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.