Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

High-Order Block Toeplitz Inner-Bordering method for solving the Gelfand-Levitan-Marchenko equation (2405.00529v1)

Published 1 May 2024 in math.NA and cs.NA

Abstract: We propose a high precision algorithm for solving the Gelfand-Levitan-Marchenko equation. The algorithm is based on the block version of the Toeplitz Inner-Bordering algorithm of Levinson's type. To approximate integrals, we use the high-precision one-sided and two-sided Gregory quadrature formulas. Also we use the Woodbury formula to construct a computational algorithm. This makes it possible to use the almost Toeplitz structure of the matrices for the fast calculations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in non-linear media. Journal of Experimental and Theoretical Physics, 34(1):62–69, 1972.
  2. Solitons and the inverse scattering transform. SIAM, 1981.
  3. George L Lamb. Elements of soliton theory. Wiley, 1980.
  4. Information Transmission Using the Nonlinear Fourier Transform, Part III: Spectrum Modulation. IEEE Transactions on Information Theory, 60(7):4346–4369, 2014.
  5. Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers. Optics Express, 22(22):26720, 11 2014.
  6. High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform. Optics Express, 25(17):20286, 8 2017.
  7. Sander Wahls. Generation of Time-Limited Signals in the Nonlinear Fourier Domain via b-Modulation. In 2017 European Conference on Optical Communication (ECOC), pages 1–3. IEEE, 9 2017.
  8. Nonlinear frequency division multiplexing with b-modulation: shifting the energy barrier. Optics Express, 26(21):27978, 10 2018.
  9. Polarization-multiplexed nonlinear inverse synthesis with standard and reduced-complexity NFT processing. Optics Express, 26(13):17360, 2018.
  10. Bound State Soliton Gas Dynamics Underlying the Spontaneous Modulational Instability. Physical Review Letters, 123(23):234102, 12 2019.
  11. Direct scattering transform of large wave packets. Optics Letters, 44(21):5298, 11 2019.
  12. Raman Kashyap. Fiber bragg gratings. Academic press, 1999.
  13. Exactly solvable profiles of quasi-rectangular bragg filter with dispersion compensation. Journal of Optics A: Pure and Applied Optics, 8(9):788, 2006.
  14. Vladimir M Akulin. Coherent dynamics of complex quantum systems. Springer Science & Business Media, 2005.
  15. L Carmel and A Mann. Geometrical approach to two-level hamiltonians. Physical review A, 61(5):052113, 2000.
  16. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. i. anomalous dispersion. Applied Physics Letters, 23(3):142–144, 1973.
  17. Optical solitons in fibers. In Optical Solitons in Fibers, pages 41–59. Springer, 2003.
  18. Solitons in optical fibers: fundamentals and applications. Elsevier, 2006.
  19. Physics and mathematics of dispersion-managed optical solitons. Comptes Rendus Physique, 4(1):145–161, 2003.
  20. Eigenvalue communication. Journal of lightwave technology, 11(3):395–399, 1993.
  21. Multieigenvalue communication. Journal of Lightwave Technology, 34(13):3110–3117, 2016.
  22. Fast inverse nonlinear fourier transforms for continuous spectra of zakharov-shabat type. arXiv preprint arXiv:1607.01305, 2016.
  23. Full-spectrum periodic nonlinear fourier transform optical communication through solving the riemann-hilbert problem. Journal of Lightwave Technology, 38(14):3602–3615, 2020.
  24. G.B. Xiao and K. Yashiro. An efficient algorithm for solving zakharov-shabat inverse scattering problem. IEEE Trans. Antennas Propag, 50:807–811, 2002.
  25. Finite bragg grating synthesis by numerical solution of hermitian gel’fand-levitan-marchenko equations. JOSA B, 23(10):2040–2045, 2006.
  26. Efficient numerical method of the fiber bragg grating synthesis. JOSA B, 24(7):1451–1457, 2007.
  27. Efficient numerical method for solving the direct zakharov–shabat scattering problem. JOSA B, 32(2):290–296, 2015.
  28. Block toeplitz inner-bordering method for the gelfand–levitan–marchenko equations associated with the zakharov–shabat system. Journal of Inverse and Ill-posed Problems, 31(2):191–202, 2023.
  29. An efficient inverse scattering algorithm for the design of nonuniform fiber bragg gratings. IEEE journal of quantum electronics, 35(8):1105–1115, 1999.
  30. A. Rosenthal and M. Horowitz. Inverse scattering algorithm for reconstructing strongly reflecting fiber bragg gratings. IEEE J. Quantum. Electron., 39:1018–1026, 2003.
  31. F. Ahmad and M. Razzagh. A numerical solution to the gel’fand-levitan-marchenko equation. Appl. Math. Comput., 89:31–39, 1998.
  32. M. Yousefi and X. Yangzhang. Linear and nonlinear frequency-division multiplexing. IEEE Transaction on Information Theory, 66(1):478–495, 2020.
  33. Vahid Aref. Control and detection of discrete spectral amplitudes in nonlinear fourier spectrum. arXiv preprint arXiv:1605.06328, 2016.
  34. Modulation over nonlinear fourier spectrum: Continuous and discrete spectrum. Journal of Lightwave Technology, 36(6):1289–1295, 2018.
  35. Nonlinear fourier transform for optical data processing and transmission: advances and perspectives. Optica, 4(3):307–322, 2017.
  36. Comparison of inverse scattering algorithms for designing ultrabroadband fibre bragg gratings. Optics express, 17(3):1995–2004, 2009.
  37. Richard Hamming. Numerical methods for scientists and engineers. McGraw-Hill, 1962.
  38. GM Phillips. Gregory’s method for numerical integration. The American Mathematical Monthly, 79(3):270–274, 1972.
  39. An improved gregory-like method for 1-d quadrature. Numerische Mathematik, 141(1):1–19, 2019.
  40. Richard E Blahut. Fast algorithms for signal processing. Cambridge University Press, 2010.
  41. William W Hager. Updating the inverse of a matrix. SIAM review, 31(2):221–239, 1989.
  42. The toeplitz package users’ guide. Technical report, Argonne Nat. Lab., 1983.
  43. Exponential fourth order schemes for direct Zakharov-Shabat problem. Optics Express, 28(1):20, 1 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.