Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lorentzian polynomials and the independence sequences of graphs (2405.00511v2)

Published 1 May 2024 in math.CO

Abstract: We study the multivariate independence polynomials of graphs and the log-concavity of the coefficients of their univariate restrictions. Let $R_{W_4}$ be the operator defined on simple and undirected graphs which replaces each edge with a caterpillar of size $4$. We prove that all graphs in the image of $R_{W_4}$ are what we call pre-Lorentzian, that is, their multivariate independence polynomial becomes Lorentzian after appropriate manipulations. In particular, as pre-Lorentzian graphs have log-concave (and therefore unimodal) independence sequences, our result makes progress on a conjecture of Alavi, Malde, Schwenk and Erd\H{o}s which asks if the independence sequence of trees or forests is unimodal.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.