Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the best constants of Schur multipliers of second order divided difference functions (2405.00464v2)

Published 1 May 2024 in math.CA, math.FA, and math.OA

Abstract: We give a new proof of the boundedness of bilinear Schur multipliers of second order divided difference functions, as obtained earlier by Potapov, Skripka and Sukochev in their proof of Koplienko's conjecture on the existence of higher order spectral shift functions. Our proof is based on recent methods involving bilinear transference and the H\"ormander-Mikhlin-Schur multiplier theorem. Our approach provides a significant sharpening of the known asymptotic bounds of bilinear Schur multipliers of second order divided difference functions. Furthermore, we give a new lower bound of these bilinear Schur multipliers, giving again a fundamental improvement on the best known bounds obtained by Coine, Le Merdy, Potapov, Sukochev and Tomskova. More precisely, we prove that for $f \in C2(\mathbb{R})$ and $1 < p, p_1, p_2 < \infty$ with $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$ we have [ \Vert M_{f{[2]}}: S_{p_1} \times S_{p_2} \rightarrow S_p \Vert \lesssim \Vert f'' \Vert_\infty D(p, p_1, p_2), ] where the constant $D(p, p_1, p_2)$ is specified in Theorem 7.1 and $D(p, 2p, 2p) \approx p4 p\ast$ with $p\ast$ the H\"older conjugate of $p$. We further show that for $f(\lambda) = \lambda \vert \lambda \vert$, $\lambda \in \mathbb{R}$, for every $1 < p < \infty$ we have [ p2 p\ast \lesssim \Vert M_{f{[2]}}: S_{2p} \times S_{2p} \rightarrow S_p \Vert. ] Here $f{[2]}$ is the second order divided difference function of $f$ with $M_{f{[2]}}$ the associated Schur multiplier. In particular it follows that our estimate $D(p, 2p, 2p)$ is optimal for $p \searrow 1$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: