2000 character limit reached
The Nucleus of a Compact Lie Group, and Support of Singularity Categories (2405.00457v2)
Published 1 May 2024 in math.AT and math.AC
Abstract: In this paper we adapt the notion of the nucleus defined by Benson, Carlson, and Robinson to compact Lie groups in non-modular characteristic. We show that it describes the singularities of the projective scheme of the cohomology of its classifying space. A notion of support for singularity categories of ring spectra (in the sense of Greenlees and Stevenson) is established, and is shown to be precisely the nucleus in this case, consistent with a conjecture of Benson and Greenlees for finite groups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.