Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Nucleus of a Compact Lie Group, and Support of Singularity Categories (2405.00457v2)

Published 1 May 2024 in math.AT and math.AC

Abstract: In this paper we adapt the notion of the nucleus defined by Benson, Carlson, and Robinson to compact Lie groups in non-modular characteristic. We show that it describes the singularities of the projective scheme of the cohomology of its classifying space. A notion of support for singularity categories of ring spectra (in the sense of Greenlees and Stevenson) is established, and is shown to be precisely the nucleus in this case, consistent with a conjecture of Benson and Greenlees for finite groups.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: