Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Quantum thermodynamics of the Caldeira-Leggett model with non-equilibrium Gaussian reservoirs (2405.00215v2)

Published 30 Apr 2024 in quant-ph and cond-mat.stat-mech

Abstract: We introduce a non-equilibrium version of the Caldeira-Leggett model in which a quantum particle is strongly coupled to a set of engineered reservoirs. The reservoirs are composed by collections of squeezed and displaced thermal modes, in contrast to the standard case in which the modes are assumed to be at equilibrium. The model proves to be very versatile. Strongly displaced/squeezed reservoirs can be used to generate an effective time dependence in the system Hamiltonian and can be identified as sources of pure work. In the case of squeezing, the time dependence is stochastic and breaks the fluctuation-dissipation relation, this can be reconciled with the second law of thermodynamics by correctly accounting for the energy used to generate the initial non-equilibrium conditions. To go beyond the average description and compute the full heat statistics, we treat squeezing and displacement as generalized Hamiltonians on a modified Keldysh contour. As an application of this technique, we show the quantum-classical correspondence between the heat statistics in the non-equilibrium Caldeira-Leggett model and the statistics of a classical Langevin particle under the action of squeezed and displaced colored noises. Finally, we discuss thermodynamic symmetries of the heat generating function, proving a fluctuation theorem for the energy balance and showing that the conservation of energy at the trajectory level emerges in the classical limit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (82)
  1. A. O. Caldeira and A. J. Leggett, Path integral approach to quantum brownian motion, Physica A: Statistical mechanics and its Applications 121, 587 (1983).
  2. M. Grifoni and P. Hänggi, Driven quantum tunneling, Physics Reports 304, 229 (1998).
  3. H. Grabert and U. Weiss, Quantum tunneling rates for asymmetric double-well systems with ohmic dissipation, Physical review letters 54, 1605 (1985).
  4. M. P. Fisher and A. T. Dorsey, Dissipative quantum tunneling in a biased double-well system at finite temperatures, Physical review letters 54, 1609 (1985).
  5. A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, 2011).
  6. A. Altland and B. D. Simons, Condensed matter field theory (Cambridge University Press, 2010).
  7. H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press on Demand, 2002).
  8. E. Aurell, Characteristic functions of quantum heat with baths at different temperatures, Physical Review E 97, 10.1103/physreve.97.062117 (2018).
  9. K. Funo and H. T. Quan, Path integral approach to quantum thermodynamics, Physical Review Letters 121, 10.1103/PhysRevLett.121.040602 (2018a).
  10. K. Funo and H. T. Quan, Path integral approach to heat in quantum thermodynamics, Physical Review E 98, 10.1103/physreve.98.012113 (2018b).
  11. E. Aurell, On work and heat in time-dependent strong coupling, Entropy 19, 595 (2017).
  12. Y. Murashita and M. Esposito, Overdamped stochastic thermodynamics with multiple reservoirs, Physical Review E 94, 062148 (2016).
  13. L. Pucci, M. Esposito, and L. Peliti, Entropy production in quantum brownian motion, Journal of Statistical Mechanics: Theory and Experiment 2013, P04005 (2013).
  14. W. Niedenzu, M. Huber, and E. Boukobza, Concepts of work in autonomous quantum heat engines, Quantum 3, 195 (2019).
  15. R. Dann and R. Kosloff, Unification of the first law of quantum thermodynamics, New Journal of Physics 25, 043019 (2023).
  16. C. Elouard and C. L. Latune, Extending the laws of thermodynamics for arbitrary autonomous quantum systems, PRX Quantum 4, 020309 (2023).
  17. M. Esposito, K. Lindenberg, and C. Van den Broeck, Entropy production as correlation between system and reservoir, New Journal of Physics 12, 013013 (2010a).
  18. M. Esposito and C. Van den Broeck, Second law and landauer principle far from equilibrium, Europhysics Letters 95, 40004 (2011).
  19. D. Reeb and M. M. Wolf, An improved landauer principle with finite-size corrections, New Journal of Physics 16, 103011 (2014).
  20. J.-T. Hsiang and B.-L. Hu, Fluctuation–dissipation relation for a quantum brownian oscillator in a parametrically squeezed thermal field, Annals of Physics 433, 168594 (2021).
  21. Z. Fei and H. T. Quan, Nonequilibrium green’s function’s approach to the calculation of work statistics, Phys. Rev. Lett. 124, 240603 (2020).
  22. C. Jarzynski, H. Quan, and S. Rahav, Quantum-classical correspondence principle for work distributions, Physical review X 5, 031038 (2015).
  23. R. Zwanzig, Nonlinear generalized langevin equations, Journal of Statistical Physics 9, 215 (1973).
  24. P. C. Martin, E. Siggia, and H. Rose, Statistical dynamics of classical systems, Physical Review A 8, 423 (1973).
  25. R. Bausch, H.-K. Janssen, and H. Wagner, Renormalized field theory of critical dynamics, Zeitschrift für Physik B Condensed Matter 24, 113 (1976).
  26. D. Andrieux and P. Gaspard, Quantum work relations and response theory, Phys. Rev. Lett. 100, 230404 (2008).
  27. M. Esposito and C. Van den Broeck, Three detailed fluctuation theorems, Physical Review Letters 104, 10.1103/physrevlett.104.090601 (2010).
  28. M. Campisi, P. Hänggi, and P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011).
  29. A. Soret, V. Cavina, and M. Esposito, Thermodynamic consistency of quantum master equations, Physical Review A 106, 062209 (2022).
  30. G. Manzano, J. M. Horowitz, and J. M. Parrondo, Quantum fluctuation theorems for arbitrary environments: adiabatic and nonadiabatic entropy production, Physical Review X 8, 031037 (2018).
  31. A. Serafini, Quantum continuous variables: a primer of theoretical methods (CRC press, 2017).
  32. R. Alicki, The quantum open system as a model of the heat engine, Journal of Physics A: Mathematical and General 12, L103 (1979).
  33. V. Cavina, A. Mari, and V. Giovannetti, Slow dynamics and thermodynamics of open quantum systems, Physical Review Letters 119, 10.1103/physrevlett.119.050601 (2017).
  34. S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemporary Physics 57, 545 (2016).
  35. L. Diósi and W. T. Strunz, The non-markovian stochastic schrödinger equation for open systems, Physics Letters A 235, 569 (1997).
  36. A. H. Kiilerich and K. Mølmer, Bayesian parameter estimation by continuous homodyne detection, Physical Review A 94, 032103 (2016).
  37. F. Albarelli and M. G. Genoni, A pedagogical introduction to continuously monitored quantum systems and measurement-based feedback, Physics Letters A 494, 129260 (2024).
  38. L. Dupays and A. Chenu, Shortcuts to squeezed thermal states, Quantum 5, 449 (2021).
  39. G. Verley, C. Van den Broeck, and M. Esposito, Work statistics in stochastically driven systems, New Journal of Physics 16, 095001 (2014).
  40. E. B. Davies, Markovian master equations, Communications in mathematical Physics 39, 91 (1974).
  41. R. Dümcke and H. Spohn, The proper form of the generator in the weak coupling limit, Zeitschrift für Physik B Condensed Matter 34, 419 (1979).
  42. A. D’Abbruzzo, V. Cavina, and V. Giovannetti, A time-dependent regularization of the redfield equation, SciPost Physics 15, 117 (2023).
  43. A. Trushechkin, Unified gorini-kossakowski-lindblad-sudarshan quantum master equation beyond the secular approximation, Physical Review A 103, 062226 (2021).
  44. F. Nathan and M. S. Rudner, Universal Lindblad equation for open quantum systems, Phys. Rev. B 102, 115109 (2020).
  45. G. Di Meglio, M. B. Plenio, and S. F. Huelga, Time dependent markovian master equation beyond the adiabatic limit, arXiv preprint arXiv:2304.06166 10.48550/arXiv.2304.06166 (2023).
  46. R. Dann, A. Levy, and R. Kosloff, Time-dependent markovian quantum master equation, Physical Review A 98, 052129 (2018).
  47. M. Yamaguchi, T. Yuge, and T. Ogawa, Markovian quantum master equation beyond adiabatic regime, Phys. Rev. E 95, 012136 (2017).
  48. A. Soret and M. Esposito, Thermodynamics of coherent energy exchanged between lasers and atoms, in preparation .
  49. A. Allahverdyan and T. M. Nieuwenhuizen, Fluctuations of work from quantum subensembles: The case against quantum work-fluctuation theorems, Physical Review E 71, 066102 (2005).
  50. P. Solinas and S. Gasparinetti, Full distribution of work done on a quantum system for arbitrary initial states, Physical Review E 92, 042150 (2015).
  51. P. Talkner and P. Hänggi, Aspects of quantum work, Physical Review E 93, 022131 (2016).
  52. P. Talkner and P. Hänggi, Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical, Reviews of Modern Physics 92, 041002 (2020).
  53. G. Watanabe, B. P. Venkatesh, and P. Talkner, Generalized energy measurements and modified transient quantum fluctuation theorems, Physical Review E 89, 052116 (2014).
  54. R. P. Feynman, Statistical mechanics: a set of lectures (CRC press, 2018).
  55. C. M. Smith and A. Caldeira, Generalized feynman-vernon approach to dissipative quantum systems, Physical Review A 36, 3509 (1987).
  56. G.-L. Ingold and Y. V. Nazarov, Charge tunneling rates in ultrasmall junctions, Single charge tunneling: Coulomb blockade phenomena in nanostructures , 21 (1992).
  57. L. V. Keldysh et al., Diagram technique for nonequilibrium processes, Sov. Phys. JETP 20, 1018 (1965).
  58. J. Schwinger, Brownian motion of a quantum oscillator, Journal of Mathematical Physics 2, 407 (1961).
  59. O. Konstantinov and V. Perel, A diagram technique for evaluating transport quantities, SOVIET PHYSICS JETP-USSR 12, 142 (1961).
  60. G. Baym and L. P. Kadanoff, Conservation laws and correlation functions, Physical Review 124, 287 (1961).
  61. G. Stefanucci and R. V. Leeuwen, Nonequilibrium many-body theory of quantum systems: a modern introduction (Cambridge University Press, 2013).
  62. J. Rammer, Quantum field theory of non-equilibrium states, Vol. 22 (Cambridge University Press Cambridge, 2007).
  63. D. C. Langreth et al., Linear and nonlinear electron transport in solids (Plenum New York, 1976).
  64. K. Sekimoto and S.-i. Sasa, Complementarity relation for irreversible process derived from stochastic energetics, Journal of the Physical Society of Japan 66, 3326 (1997).
  65. K. Sekimoto, Langevin equation and thermodynamics, Progress of Theoretical Physics Supplement 130, 17 (1998).
  66. A. Polkovnikov, Phase space representation of quantum dynamics, Annals of Physics 325, 1790–1852 (2010).
  67. A. Polkovnikov, Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation, Physical Review A 68, 053604 (2003).
  68. J. Kurchan, A quantum fluctuation theorem (2000), arXiv:cond-mat/0007360 [cond-mat.stat-mech] .
  69. G. Bochkov and Y. E. Kuzovlev, General theory of thermal fluctuations in nonlinear systems, Zh. Eksp. Teor. Fiz 72, 238 (1977).
  70. R. Dann and R. Kosloff, Open system dynamics from thermodynamic compatibility, Phys. Rev. Research 3, 023006 (2021).
  71. D. Andrieux and P. Gaspard, A fluctuation theorem for currents and non-linear response coefficients, Journal of Statistical Mechanics: Theory and Experiment 2007, P02006 (2007).
  72. M. Barbier and P. Gaspard, Microreversibility and nonequilibrium response theory in magnetic fields, Journal of Physics A: Mathematical and Theoretical 52, 025003 (2018).
  73. W. Majewski, The detailed balance condition in quantum statistical mechanics, Journal of mathematical physics 25, 614 (1984).
  74. R. Alicki, On the detailed balance condition for non-hamiltonian systems, Reports on Mathematical Physics 10, 249 (1976).
  75. G. Agarwal, Open quantum markovian systems and the microreversibility, Zeitschrift für Physik A Hadrons and nuclei 258, 409 (1973).
  76. R. Rao and M. Esposito, Detailed fluctuation theorems: A unifying perspective, Entropy 20, 635 (2018).
  77. R. S. Whitney, Non-markovian quantum thermodynamics: Laws and fluctuation theorems, Physical Review B 98, 085415 (2018).
  78. R. Kubo, The fluctuation-dissipation theorem, Reports on progress in physics 29, 255 (1966).
  79. C. Aron, G. Biroli, and L. F. Cugliandolo, (non) equilibrium dynamics: a (broken) symmetry of the keldysh generating functional, SciPost Physics 4, 008 (2018).
  80. J. Yeo, Symmetry and its breaking in a path-integral approach to quantum brownian motion, Physical Review E 100, 062107 (2019).
  81. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Reports on progress in physics 75, 126001 (2012).
  82. Y.-x. Liu, C. Sun, and F. Nori, Scalable superconducting qubit circuits using dressed states, Physical Review A 74, 052321 (2006).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: