Papers
Topics
Authors
Recent
2000 character limit reached

Improving Channel Resilience for Task-Oriented Semantic Communications: A Unified Information Bottleneck Approach (2405.00135v1)

Published 30 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: Task-oriented semantic communications (TSC) enhance radio resource efficiency by transmitting task-relevant semantic information. However, current research often overlooks the inherent semantic distinctions among encoded features. Due to unavoidable channel variations from time and frequency-selective fading, semantically sensitive feature units could be more susceptible to erroneous inference if corrupted by dynamic channels. Therefore, this letter introduces a unified channel-resilient TSC framework via information bottleneck. This framework complements existing TSC approaches by controlling information flow to capture fine-grained feature-level semantic robustness. Experiments on a case study for real-time subchannel allocation validate the framework's effectiveness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. T. M. Getu, G. Kaddoum, and M. Bennis, “A survey on goal-oriented semantic communication: Techniques, challenges, and future directions,” IEEE Access, vol. 12, pp. 51 223–51 274, 2024.
  2. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 5–41, 2022.
  3. Y. Yang, C. Guo, F. Liu, C. Liu, L. Sun, Q. Sun, and J. Chen, “Semantic communications with artificial intelligence tasks: Reducing bandwidth requirements and improving artificial intelligence task performance,” IEEE Industrial Electronics Magazine, vol. 17, no. 3, pp. 4–13, 2022.
  4. J. Shao, Y. Mao, and J. Zhang, “Learning task-oriented communication for edge inference: An information bottleneck approach,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 197–211, 2021.
  5. L. Sun, Y. Yang, M. Chen, C. Guo, W. Saad, and H. V. Poor, “Adaptive information bottleneck guided joint source and channel coding for image transmission,” IEEE journal on selected areas in communications, vol. 41, no. 8, pp. 2628–2644, 2023.
  6. H. Xie, Z. Qin, and G. Y. Li, “Task-oriented multi-user semantic communications for VQA,” IEEE Wireless Communications Letters, vol. 11, no. 3, pp. 553–557, 2021.
  7. C. Liu, C. Guo, Y. Yang, and N. Jiang, “Adaptable semantic compression and resource allocation for task-oriented communications,” IEEE Transactions on Cognitive Communications and Networking, 2023, doi: 10.1109/TCCN.2023.3346481.
  8. F. Zhao, G. Bagwe, E. Mohammed, L. Feng, L. Zhang, and Y. Sun, “Joint computing resource and bandwidth allocation for semantic communication networks,” in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall).   IEEE, 2023, pp. 1–5.
  9. S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation techniques based on pilot arrangement in ofdm systems,” IEEE Transactions on broadcasting, vol. 48, no. 3, pp. 223–229, 2002.
  10. S. Ma, W. Qiao, Y. Wu, H. Li, G. Shi, D. Gao, Y. Shi, S. Li, and N. Al-Dhahir, “Task-oriented explainable semantic communications,” IEEE Transactions on Wireless Communications, vol. 22, no. 12, pp. 9248–9262, 2023.
  11. N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv preprint physics/0004057, 2000.
  12. S. Xie, S. Ma, M. Ding, Y. Shi, M. Tang, and Y. Wu, “Robust information bottleneck for task-oriented communication with digital modulation,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 8, pp. 2577–2591, 2023.
  13. D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness may be at odds with accuracy,” arXiv preprint arXiv:1805.12152, 2018.
  14. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
  15. Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng et al., “Reading digits in natural images with unsupervised feature learning,” in NIPS workshop on deep learning and unsupervised feature learning, vol. 2011, no. 5.   Granada, Spain, 2011, pp. 1–9.
  16. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  17. C. Liu, C. Guo, Y. Yang, W. Ni, and T. Q. Quek, “OFDM-based digital semantic communication with importance awareness,” arXiv preprint arXiv:2401.02178, 2024.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.