Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Primordial black hole probes of heavy neutral leptons (2405.00124v2)

Published 30 Apr 2024 in hep-ph and astro-ph.HE

Abstract: Primordial black holes (PBH), while still constituting a viable dark matter component, are expected to evaporate through Hawking radiation. Assuming the semi-classical approximation holds up to near the Planck scale, PBHs are expected to evaporate by the present time, emitting a significant flux of particles in their final moments, if produced in the early Universe with an initial mass of $\sim 10{15}$ g. These ``exploding'' black holes will release a burst of Standard Model particles alongside any additional degrees of freedom, should they exist. We explore the possibility that heavy neutral leptons (HNL), mixing with active neutrinos, are emitted in the final evaporation stages. We perform a multimessenger analysis. We calculate the expected number of active neutrinos from such an event, including contributions due to the HNL decay for different assumptions on the mixings, that could be visible in IceCube. We also estimate the number of gamma-ray events expected at HAWC. By combining the two signals, we infer sensitivities on the active-sterile neutrino mixing and on the sterile neutrino mass. We find that, for instance, for the scenario where $U_{\tau 4}\neq 0$, IceCube and HAWC could improve current constraints by a few orders of magnitude, for HNLs masses between 0.1 - 1 GeV, and a PBH explosion occurring at a distance of $\sim 10{-4}$ pc from Earth.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. J. Billard et al. arXiv:2104.07634 [hep-ex].
  2. B. Carr and F. Kuhnel Ann. Rev. Nucl. Part. Sci. 70 (2020) 355–394, arXiv:2006.02838 [astro-ph.CO].
  3. S. Bird et al. Phys. Dark Univ. 41 (2023) 101231, arXiv:2203.08967 [hep-ph].
  4. A. M. Green 2, 2024. arXiv:2402.15211 [astro-ph.CO].
  5. S. Hawking Mon. Not. Roy. Astron. Soc. 152 (1971) 75.
  6. B. J. Carr and S. W. Hawking Mon. Not. Roy. Astron. Soc. 168 (1974) 399–415.
  7. G. F. Chapline Nature 253 no. 5489, (1975) 251–252.
  8. S. W. Hawking Nature 248 (1974) 30–31.
  9. S. W. Hawking Commun. Math. Phys. 43 (1975) 199–220. [Erratum: Commun.Math.Phys. 46, 206 (1976)].
  10. B. J. Carr Astrophys. J.  206 (May, 1976) 8–25.
  11. E. L. Wright Astrophys. J. 459 (1996) 487, arXiv:astro-ph/9509074.
  12. P. He and L.-Z. Fang Astrophys. J. Lett. 568 (2002) L1–L4, arXiv:astro-ph/0202218.
  13. K. J. Mack and D. H. Wesley arXiv:0805.1531 [astro-ph].
  14. J. Auffinger Prog. Part. Nucl. Phys. 131 (2023) 104040, arXiv:2206.02672 [astro-ph.CO].
  15. D. N. Page Phys. Rev. D 13 (1976) 198–206.
  16. D. N. Page Phys. Rev. D 14 (1976) 3260–3273.
  17. 7, 2013. arXiv:1307.4898 [astro-ph.HE].
  18. A. A. Abdo et al. Astropart. Phys. 64 (2015) 4–12, arXiv:1407.1686 [astro-ph.HE].
  19. HAWC Collaboration, A. U. Abeysekara et al. arXiv:1310.0073 [astro-ph.HE].
  20. 3, 2010. arXiv:1003.4515 [astro-ph.HE].
  21. M. Calzà and J. a. G. Rosa arXiv:2312.09261 [hep-ph].
  22. M. J. Baker and A. Thamm JHEP 01 (2023) 063, arXiv:2210.02805 [hep-ph].
  23. M. Calzà and J. a. G. Rosa JHEP 12 (2022) 090, arXiv:2210.06500 [gr-qc].
  24. M. Calzà and J. a. G. Rosa arXiv:2311.12930 [gr-qc].
  25. M. Drewes and B. Garbrecht Nucl. Phys. B 921 (2017) 250–315, arXiv:1502.00477 [hep-ph].
  26. S. W. Hawking Phys. Rev. D 14 (1976) 2460–2473.
  27. D. N. Page Phys. Rev. Lett. 71 (1993) 3743–3746, arXiv:hep-th/9306083.
  28. D. N. Page JCAP 09 (2013) 028, arXiv:1301.4995 [hep-th].
  29. J. H. MacGibbon and B. R. Webber Phys. Rev. D 41 (1990) 3052–3079.
  30. J. H. MacGibbon Phys. Rev. D 44 (1991) 376–392.
  31. D. N. Page Phys. Rev. D 16 (1977) 2402–2411.
  32. A. Arbey and J. Auffinger Eur. Phys. J. C 81 (2021) 910, arXiv:2108.02737 [gr-qc].
  33. C. Lunardini and Y. F. Perez-Gonzalez JCAP 08 (2020) 014, arXiv:1910.07864 [hep-ph].
  34. P. Minkowski Phys. Lett. 67B (1977) 421–428.
  35. T. Yanagida Conf. Proc. C 7902131 (1979) 95–99.
  36. R. N. Mohapatra and G. Senjanovic Phys. Rev. Lett. 44 (1980) 912.
  37. J. Schechter and J. W. F. Valle Phys.Rev.D 22 (1980) 2227.
  38. R. N. Mohapatra and J. W. F. Valle Phys. Rev. D 34 (1986) 1642.
  39. R. E. Shrock Phys. Rev. D 24 (1981) 1232.
  40. D. A. Bryman and R. Shrock Phys. Rev. D 100 (2019) 073011, arXiv:1909.11198 [hep-ph].
  41. V. Syvolap arXiv:2301.07052 [hep-ph].
  42. Particle Data Group Collaboration, R. L. Workman et al. PTEP 2022 (2022) 083C01.
  43. G. Bernardi et al. Phys. Lett. B 203 (1988) 332–334.
  44. CHARM II Collaboration, P. Vilain et al. Phys. Lett. B 343 (1995) 453–458.
  45. BAIKAL Collaboration, I. A. Belolaptikov et al. Astropart. Phys. 7 (1997) 263–282.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 20 likes.

Upgrade to Pro to view all of the tweets about this paper: