Papers
Topics
Authors
Recent
2000 character limit reached

Synchrony for weak coupling in the complexified Kuramoto model (2404.19637v1)

Published 28 Apr 2024 in nlin.AO

Abstract: We present the finite-size Kuramoto model analytically continued from real to complex variables and analyze its collective dynamics. For strong coupling, synchrony appears through locked states that constitute attractors, as for the real-variable system. However, synchrony persists in the form of \textit{complex locked states} for coupling strengths $K$ below the transition $K{(\text{pl})}$ to classical \textit{phase locking}. Stable complex locked states indicate a locked sub-population of zero mean frequency in the real-variable model and their imaginary parts help identifying which units comprise that sub-population. We uncover a second transition at $K'<K{(\text{pl})}$ below which complex locked states become linearly unstable yet still exist for arbitrarily small coupling strengths.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization – A universal concept in nonlinear sciences (Cambridge University Press, 2008).
  2. G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscillatory Networks (Springer Berlin Heidelberg, 2007).
  3. E. Schöll, S. H. L. Klapp, and P. Hövel, eds., Control of Self-Organizing Nonlinear Systems (Springer International Publishing, 2016).
  4. G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B 61, 485 (2008).
  5. Y. Kuramoto, International Symposium on Mathematical Problems in Theoretical Physics, edited by Araki and Huzihiro (Springer Berlin Heidelberg, Berlin, Heidelberg, 1975) pp. 420–422.
  6. S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D 143, 1 (2000).
  7. Y. Kuramoto and H. Nakao, On the concept of dynamical reduction: the case of coupled oscillators, Phil. Trans. R. Soc. A 377, 20190041 (2019).
  8. M. A. Lohe, Non-Abelian Kuramoto models and synchronization, Journal of Physics A: Mathematical and Theoretical 42, 395101 (2009).
  9. R. E. Mirollo and S. H. Strogatz, Amplitude death in an array of limit-cycle oscillators, J. Stat. Phys. 60, 245 (1990).
  10. R. Mirollo and S. Strogatz, The Spectrum of the Partially Locked State for the Kuramoto Model, J. Nonlinear Sci. 17, 309 (2007).
  11. H. Dietert, Stability of partially locked states in the Kuramoto model through Landau damping with Sobolev regularity, arXiv:1707.03475 (2017).
  12. F. Peter and A. Pikovsky, Transition to collective oscillations in finite Kuramoto ensembles, Phys. Rev. E 97, 032310 (2018).
  13. H. A. Priestley, Introduction to Complex Analysis (Oxford University Press, 2003).
  14. T. D. Lee and C. N. Yang, Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model, Physical Review 87, 410 (1952).
  15. C. N. Yang and T. D. Lee, Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation, Physical Review 87, 404 (1952).
  16. C. M. Bender, S. Boettcher, and P. N. Meisinger, PT-symmetric quantum mechanics, J. Math. Phys. 40, 2201 (1999).
  17. C. M. Bender, Introduction to 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric quantum theory, Contemporary Phys. 46, 277 (2005).
  18. See Supplemental Material at [url will be inserted by publisher] for further details on the asymptotic fixed-point analysis N>2𝑁2N>2italic_N > 2 and on the conserved quantity E𝐸Eitalic_E for the case N=2𝑁2N=2italic_N = 2.
  19. M. Timme and M. Schröder, Disentangling scaling arguments to empower complex systems analysis, Nat. Phys. 16, 1086 (2020).
  20. S. Chandra, M. Girvan, and E. Ott, Continuous versus discontinuous transitions in the d𝑑ditalic_d-dimensional generalized Kuramoto model: Odd d𝑑ditalic_d is different, Phys. Rev. X 9, 011002 (2019).
  21. R. Olfati-Saber, Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks, in Proceedings of the 45th IEEE Conference on Decision and Control (IEEE, 2006).
  22. J. Zhu, Synchronization of Kuramoto model in a high-dimensional linear space, Physics Letters A 377, 2939 (2013).
  23. V. Jaćimović and A. Crnkić, Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 083105 (2018).
  24. D. C. Roberts, Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators, Phys. Rev. E 77, 031114 (2008).
  25. L. Muller, J. Minác, and T. T. Nguyen, Algebraic approach to the Kuramoto model, Phys. Rev. E 104, L022201 (2021).
  26. C. M. Bender, D. D. Holm, and D. W. Hook, Complexified dynamical systems, J. Phys. A 40, F793 (2007).
  27. C. M. Bender and D. W. Hook, Quantum tunneling as a classical anomaly, J. of Phys. A 44, 372001 (2011).
  28. O. Omel’chenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model, Phys. Rev. Lett. 109, 164101 (2012).
  29. P. Ashwin and M. Timme, Unstable attractors: existence and robustness in networks of oscillators with delayed pulse coupling, Nonlinearity 18, 2035 (2005).
  30. M. Timme, Does dynamics reflect topology in directed networks?, Europhysics Letters 76, 367 (2006).
  31. F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica 50, 1539 (2014).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.