Synchrony for weak coupling in the complexified Kuramoto model (2404.19637v1)
Abstract: We present the finite-size Kuramoto model analytically continued from real to complex variables and analyze its collective dynamics. For strong coupling, synchrony appears through locked states that constitute attractors, as for the real-variable system. However, synchrony persists in the form of \textit{complex locked states} for coupling strengths $K$ below the transition $K{(\text{pl})}$ to classical \textit{phase locking}. Stable complex locked states indicate a locked sub-population of zero mean frequency in the real-variable model and their imaginary parts help identifying which units comprise that sub-population. We uncover a second transition at $K'<K{(\text{pl})}$ below which complex locked states become linearly unstable yet still exist for arbitrarily small coupling strengths.
- A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization – A universal concept in nonlinear sciences (Cambridge University Press, 2008).
- G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in Oscillatory Networks (Springer Berlin Heidelberg, 2007).
- E. Schöll, S. H. L. Klapp, and P. Hövel, eds., Control of Self-Organizing Nonlinear Systems (Springer International Publishing, 2016).
- G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B 61, 485 (2008).
- Y. Kuramoto, International Symposium on Mathematical Problems in Theoretical Physics, edited by Araki and Huzihiro (Springer Berlin Heidelberg, Berlin, Heidelberg, 1975) pp. 420–422.
- S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D 143, 1 (2000).
- Y. Kuramoto and H. Nakao, On the concept of dynamical reduction: the case of coupled oscillators, Phil. Trans. R. Soc. A 377, 20190041 (2019).
- M. A. Lohe, Non-Abelian Kuramoto models and synchronization, Journal of Physics A: Mathematical and Theoretical 42, 395101 (2009).
- R. E. Mirollo and S. H. Strogatz, Amplitude death in an array of limit-cycle oscillators, J. Stat. Phys. 60, 245 (1990).
- R. Mirollo and S. Strogatz, The Spectrum of the Partially Locked State for the Kuramoto Model, J. Nonlinear Sci. 17, 309 (2007).
- H. Dietert, Stability of partially locked states in the Kuramoto model through Landau damping with Sobolev regularity, arXiv:1707.03475 (2017).
- F. Peter and A. Pikovsky, Transition to collective oscillations in finite Kuramoto ensembles, Phys. Rev. E 97, 032310 (2018).
- H. A. Priestley, Introduction to Complex Analysis (Oxford University Press, 2003).
- T. D. Lee and C. N. Yang, Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model, Physical Review 87, 410 (1952).
- C. N. Yang and T. D. Lee, Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation, Physical Review 87, 404 (1952).
- C. M. Bender, S. Boettcher, and P. N. Meisinger, PT-symmetric quantum mechanics, J. Math. Phys. 40, 2201 (1999).
- C. M. Bender, Introduction to 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric quantum theory, Contemporary Phys. 46, 277 (2005).
- See Supplemental Material at [url will be inserted by publisher] for further details on the asymptotic fixed-point analysis N>2𝑁2N>2italic_N > 2 and on the conserved quantity E𝐸Eitalic_E for the case N=2𝑁2N=2italic_N = 2.
- M. Timme and M. Schröder, Disentangling scaling arguments to empower complex systems analysis, Nat. Phys. 16, 1086 (2020).
- S. Chandra, M. Girvan, and E. Ott, Continuous versus discontinuous transitions in the d𝑑ditalic_d-dimensional generalized Kuramoto model: Odd d𝑑ditalic_d is different, Phys. Rev. X 9, 011002 (2019).
- R. Olfati-Saber, Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks, in Proceedings of the 45th IEEE Conference on Decision and Control (IEEE, 2006).
- J. Zhu, Synchronization of Kuramoto model in a high-dimensional linear space, Physics Letters A 377, 2939 (2013).
- V. Jaćimović and A. Crnkić, Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 083105 (2018).
- D. C. Roberts, Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators, Phys. Rev. E 77, 031114 (2008).
- L. Muller, J. Minác, and T. T. Nguyen, Algebraic approach to the Kuramoto model, Phys. Rev. E 104, L022201 (2021).
- C. M. Bender, D. D. Holm, and D. W. Hook, Complexified dynamical systems, J. Phys. A 40, F793 (2007).
- C. M. Bender and D. W. Hook, Quantum tunneling as a classical anomaly, J. of Phys. A 44, 372001 (2011).
- O. Omel’chenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model, Phys. Rev. Lett. 109, 164101 (2012).
- P. Ashwin and M. Timme, Unstable attractors: existence and robustness in networks of oscillators with delayed pulse coupling, Nonlinearity 18, 2035 (2005).
- M. Timme, Does dynamics reflect topology in directed networks?, Europhysics Letters 76, 367 (2006).
- F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica 50, 1539 (2014).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.