Intrinsic negative magnetoresistance from the chiral anomaly of multifold fermions (2404.19424v1)
Abstract: The chiral anomaly, a hallmark of chiral spin-1/2 Weyl fermions, is an imbalance between left- and right-moving particles that underpins both high and low energy phenomena, including particle decay and negative longitudinal magnetoresistance in Weyl semimetals. The discovery that chiral crystals can host higher-spin generalizations of Weyl quasiparticles without high-energy counterparts, known as multifold fermions, raises the fundamental question of whether the chiral anomaly is a more general phenomenon. Answering this question requires materials with chiral quasiparticles within a sizable energy window around the Fermi level, that are unaffected by trivial extrinsic effects such as current jetting. Here we report the chiral anomaly of multifold fermions in CoSi, which features multifold bands within about 0.85 eV around the Fermi level. By excluding current jetting through the squeezing test, we measure an intrinsic, longitudinal negative magnetoresistance. We develop the semiclassical theory of magnetotransport of multifold fermions that shows that the negative magnetoresistance originates in their chiral anomaly, despite a sizable and detrimental orbital magnetic moment contribution, previously unaccounted for. A concomitant nonlinear Hall effect supports the multifold-fermion origin of magnetotransport. Our work confirms the chiral anomaly of higher-spin generalizations of Weyl fermions, currently inaccessible outside the solid-state.
- N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Reviews of Modern Physics 90, 015001 (2018).
- J. L. Manes, Existence of bulk chiral fermions and crystal symmetry, Physical Review B 85, 10.1103/PhysRevB.85.155118 (2012).
- P. Tang, Q. Zhou, and S.-C. Zhang, Multiple types of topological fermions in transition metal silicides, Physical Review Letters 119, 10.1103/PhysRevLett.119.206402 (2017), arXiv: 1706.03817.
- R. A. Bertlmann, Anomalies in quantum field theory, Vol. 91 (Oxford university press, 2000).
- M. Ezawa, Chiral anomaly enhancement and photoirradiation effects in multiband touching fermion systems, Phys. Rev. B 95, 205201 (2017).
- L. Lepori, M. Burrello, and E. Guadagnini, Axial anomaly in multi-weyl and triple-point semimetals, Journal of High Energy Physics 2018, 110 (2018).
- D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88, 104412 (2013), publisher: American Physical Society.
- N. P. Ong and S. Liang, Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals, Nat Rev Phys 3, 394 (2021), number: 6 Publisher: Nature Publishing Group.
- D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Reviews of Modern Physics 82, 1959 (2010).
- A. E. Petrova, O. A. Sobolevskii, and S. M. Stishov, Magnetoresistance and Kohler rule in the topological chiral semimetals CoSi, Phys. Rev. B 107, 085136 (2023), arXiv:2209.02036 [cond-mat].
- A. B. Pippard, Magnetoresistance in Metals (Cambridge University Press, 1989).
- J. Behrends and J. H. Bardarson, Strongly angle-dependent magnetoresistance in weyl semimetals with long-range disorder, Phys. Rev. B 96, 060201 (2017).
- K. Das and A. Agarwal, Intrinsic hall conductivities induced by the orbital magnetic moment, Phys. Rev. B 103, 125432 (2021).
- H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice: (I). Proof by homotopy theory, Nuclear Physics B 185, 20 (1981a).
- H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice: (II). Intuitive topological proof, Nuclear Physics B 193, 173 (1981b).
- R. Lundgren, P. Laurell, and G. A. Fiete, Thermoelectric properties of weyl and dirac semimetals, Phys. Rev. B 90, 165115 (2014).
- K.-S. Kim, H.-J. Kim, and M. Sasaki, Boltzmann equation approach to anomalous transport in a weyl metal, Phys. Rev. B 89, 195137 (2014).
- J. Ma and D. A. Pesin, Chiral magnetic effect and natural optical activity in metals with or without weyl points, Phys. Rev. B 92, 235205 (2015).
- M. Imran and S. Hershfield, Berry curvature force and lorentz force comparison in the magnetotransport of weyl semimetals, Phys. Rev. B 98, 205139 (2018).
- D. Mandal, K. Das, and A. Agarwal, Chiral anomaly and nonlinear magnetotransport in time reversal symmetric Weyl semimetals, Physical Review B 106, 035423 (2022), 2201.02505 .
- G. Sundaram and Q. Niu, Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects, Physical Review B 59, 14915 (1999).
- Y. Gao, S. A. Yang, and Q. Niu, Field induced positional shift of bloch electrons and its dynamical implications, Phys. Rev. Lett. 112, 166601 (2014).
- J. Suh and H. Min, Effect of trivial bands on chiral anomaly-induced longitudinal magnetoconductivity in weyl semimetals, arXiv:2401.13855 (2024), arXiv:2401.13855 [cond-mat.mes-hall] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.