Thermodynamics of charged Lifshitz black holes with scalar hair (2404.19423v2)
Abstract: In this work, we discuss the generalized Einstein-Maxwell-Dilaton gravity theory with a nonminimal coupling between the Maxwell field and scalar field. Considering different geometric properties of black hole horizon structure, the charged dilaton Lifshitz black hole solutions are presented in 4-dimensional spacetimes. Later, utilizing the Wald Formalism, we derive the thermodynamic first law of black hole and conserved quantities. According to the relationship between the heat capacity and the local stability of black hole, we study the stability of charged Lifshitz black holes and identify the thermodynamic stable region of black holes that meet the criteria.
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998), 231-252 doi:10.4310/ATMP.1998.v2.n2.a1 [arXiv:hep-th/9711200 [hep-th]].
- O. Lunin and S. D. Mathur, “AdS / CFT duality and the black hole information paradox,” Nucl. Phys. B 623 (2002), 342-394 doi:10.1016/S0550-3213(01)00620-4 [arXiv:hep-th/0109154 [hep-th]].
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” AIP Conf. Proc. 484 (1999) no.1, 51 doi:10.1063/1.59653
- E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998), 253-291 doi:10.4310/ATMP.1998.v2.n2.a2 [arXiv:hep-th/9802150 [hep-th]].
- S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26 (2009), 224002 doi:10.1088/0264-9381/26/22/224002 [arXiv:0903.3246 [hep-th]].
- S. Kachru, X. Liu and M. Mulligan, “Gravity duals of Lifshitz-like fixed points,” Phys. Rev. D 78 (2008), 106005 doi:10.1103/PhysRevD.78.106005 [arXiv:0808.1725 [hep-th]].
- R. Ruffini and J. A. Wheeler, “Introducing the black hole,” Phys. Today 24 (1971) no.1, 30 doi:10.1063/1.3022513
- J. D. Bekenstein, “Nonexistence of baryon number for static black holes,” Phys. Rev. D 5 (1972), 1239-1246 doi:10.1103/PhysRevD.5.1239
- M. J. Perry, “Black Holes Are Colored,” Phys. Lett. B 71 (1977), 234-236 doi:10.1016/0370-2693(77)90786-9
- D. V. Galtsov and A. A. Ershov, “Nonabelian Baldness of Colored Black Holes,” Phys. Lett. A 138 (1989), 160-164 doi:10.1016/0375-9601(89)90019-4
- P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, “Dilatonic black holes in higher curvature string gravity,” Phys. Rev. D 54 (1996), 5049-5058 doi:10.1103/PhysRevD.54.5049 [arXiv:hep-th/9511071 [hep-th]].
- H. Luckock and I. Moss, “BLACK HOLES HAVE SKYRMION HAIR,” Phys. Lett. B 176 (1986), 341-345 doi:10.1016/0370-2693(86)90175-9
- J. Novak, “Spherical neutron star collapse in tensor - scalar theory of gravity,” Phys. Rev. D 57 (1998), 4789-4801 doi:10.1103/PhysRevD.57.4789 [arXiv:gr-qc/9707041 [gr-qc]].
- C. A. R. Herdeiro, E. Radu, N. Sanchis-Gual and J. A. Font, “Spontaneous Scalarization of Charged Black Holes,” Phys. Rev. Lett. 121 (2018) no.10, 101102 doi:10.1103/PhysRevLett.121.101102 [arXiv:1806.05190 [gr-qc]].
- C. A. R. Herdeiro and E. Radu, “Black hole scalarization from the breakdown of scale invariance,” Phys. Rev. D 99 (2019) no.8, 084039 doi:10.1103/PhysRevD.99.084039 [arXiv:1901.02953 [gr-qc]].
- A. Herrera-Aguilar, D. F. Higuita-Borja and J. A. Méndez-Zavaleta, “Scalarization-like mechanism through spacetime anisotropic scaling symmetry,” Phys. Rev. D 103 (2021) no.12, 124025 doi:10.1103/PhysRevD.103.124025 [arXiv:2012.13412 [hep-th]].
- D. C. Moreira, A. S. Lemos and F. A. Brito, “Charged Lifshitz black holes from general covariance breaking,” Class. Quant. Grav. 41 (2024) no.4, 045004 doi:10.1088/1361-6382/ad1d47 [arXiv:2307.07305 [hep-th]].
- I. Andrade, M. A. Marques, R. Menezes and D. C. Moreira, “Spatially localized scalar structures on hyperscaling violating geometries,” [arXiv:2401.14082 [hep-th]].
- J. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black hole mechanics,” Commun. Math. Phys. 31 (1973), 161-170 doi:10.1007/BF01645742
- L. F. Abbott and S. Deser, “Stability of Gravity with a Cosmological Constant,” Nucl. Phys. B 195 (1982), 76-96 doi:10.1016/0550-3213(82)90049-9
- R. L. Arnowitt, S. Deser and C. W. Misner, “Dynamical Structure and Definition of Energy in General Relativity,” Phys. Rev. 116 (1959), 1322-1330 doi:10.1103/PhysRev.116.1322
- A. Anabalon, D. Astefanesei, D. Choque and C. Martinez, “Trace Anomaly and Counterterms in Designer Gravity,” JHEP 03 (2016), 117 doi:10.1007/JHEP03(2016)117 [arXiv:1511.08759 [hep-th]].
- G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions in Quantum Gravity,” Phys. Rev. D 15 (1977), 2752-2756 doi:10.1103/PhysRevD.15.2752
- R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48 (1993) no.8, R3427-R3431 doi:10.1103/PhysRevD.48.R3427 [arXiv:gr-qc/9307038 [gr-qc]].
- S. Gao and R. M. Wald, “The ‘Physical process’ version of the first law and the generalized second law for charged and rotating black holes,” Phys. Rev. D 64 (2001), 084020 doi:10.1103/PhysRevD.64.084020 [arXiv:gr-qc/0106071 [gr-qc]].
- S. Gao, “The First law of black hole mechanics in Einstein-Maxwell and Einstein-Yang-Mills theories,” Phys. Rev. D 68, 044016 (2003) doi:10.1103/PhysRevD.68.044016 [arXiv:gr-qc/0304094 [gr-qc]].
- G. W. Gibbons, R. Kallosh and B. Kol, “Moduli, scalar charges, and the first law of black hole thermodynamics,” Phys. Rev. Lett. 77 (1996), 4992-4995 doi:10.1103/PhysRevLett.77.4992 [arXiv:hep-th/9607108 [hep-th]].
- H. S. Liu, H. Lü and C. N. Pope, “Thermodynamics of Einstein-Proca AdS Black Holes,” JHEP 06, 109 (2014) doi:10.1007/JHEP06(2014)109 [arXiv:1402.5153 [hep-th]].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.