Papers
Topics
Authors
Recent
2000 character limit reached

Many-body quantum thermal machines in a Lieb-kagome Hubbard model (2404.19140v1)

Published 29 Apr 2024 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: Quantum many-body systems serve as a suitable working medium for realizing quantum thermal machines (QTMs) by offering distinct advantages such as cooperative many-body effects, and performance boost at the quantum critical points. However, the bulk of the existing literature exploring the criticality of many-body systems in the context of QTMs involves models sans the electronic interactions, which are non-trivial to deal with and require sophisticated numerical techniques. Here we adopt the prototypical Hubbard model in two dimensions (2D) in the framework of the line graph Lieb-kagome lattice for the working medium of a multi-functional QTM. We resort to a non-perturbative, static path approximated (SPA) Monte Carlo technique to deal with the repulsive Hubbard model. We observe that in a Stirling cycle, in both the interacting and non-interacting limits, the heat engine function dominates and its performance gets better when the strain is induced from the kagome to the Lieb limit, while for the reverse the refrigeration action is preferred. Further, we show that the QTM performs better when the difference between the temperatures of the two baths is lower and the QTM reaches the Carnot limit in this regime. Further, we extensively study the performance of the QTM in the repulsive Hubbard interacting regime where the magnetic orders come into the picture. We explore the performance of the QTM along the quantum critical points and in the large interaction limit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (91)
  1. H. E. D. Scovil and E. O. Schulz-DuBois, “Three-level masers as heat engines,” Phys. Rev. Lett. 2, 262–263 (1959).
  2. R. Alicki, “The quantum open system as a model of the heat engine,” J. Phys. A 12, L103–L107 (1979).
  3. Victor Mukherjee and Uma Divakaran, “Many-body quantum thermal machines,” Journal of Physics: Condensed Matter 33, 454001 (2021).
  4. Eitan Geva and Ronnie Kosloff, “The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three level amplifier,” The Journal of Chemical Physics 104, 7681–7699 (1996), https://doi.org/10.1063/1.471453 .
  5. Loris Maria Cangemi, Chitrak Bhadra,  and Amikam Levy, “Quantum engines and refrigerators,”  (2023), arXiv:2302.00726 [quant-ph] .
  6. David Gelbwaser-Klimovsky, Wolfgang Niedenzu,  and Gershon Kurizki, “Thermodynamics of quantum systems under dynamical control,” Advances In Atomic, Molecular, and Optical Physics 64, 329–407 (2015).
  7. D. Gelbwaser-Klimovsky, R. Alicki,  and G. Kurizki, “Minimal universal quantum heat machine,” Phys. Rev. E 87, 012140 (2013).
  8. Tomáš Opatrnỳ, Šimon Bräuer, Abraham G Kofman, Avijit Misra, Nilakantha Meher, Ofer Firstenberg, Eilon Poem,  and Gershon Kurizki, “Nonlinear coherent heat machines,” Science advances 9, eadf1070 (2023).
  9. Avijit Misra, Tomáš Opatrný,  and Gershon Kurizki, “Work extraction from single-mode thermal noise by measurements: How important is information?” Physical Review E 106 (2022), 10.1103/physreve.106.054131.
  10. Tomas Opatrný, Avijit Misra,  and Gershon Kurizki, “Work generation from thermal noise by quantum phase-sensitive observation,” Physical Review Letters 127 (2021), 10.1103/physrevlett.127.040602.
  11. Nathan M Myers, Obinna Abah,  and Sebastian Deffner, “Quantum thermodynamic devices: From theoretical proposals to experimental reality,” AVS quantum science 4 (2022).
  12. Sourav Bhattacharjee and Amit Dutta, “Quantum thermal machines and batteries,” The European Physical Journal B 94, 1–42 (2021).
  13. Tanmoy Pandit, Pritam Chattopadhyay,  and Goutam Paul, “Non-commutative space engine: a boost to thermodynamic processes,” Modern Physics Letters A 36, 2150174 (2021).
  14. Pritam Chattopadhyay, Tanmoy Pandit, Ayan Mitra,  and Goutam Paul, “Quantum cycle in relativistic non-commutative space with generalized uncertainty principle correction,” Physica A: Statistical Mechanics and its Applications 584, 126365 (2021a).
  15. Debarupa Saha, Aparajita Bhattacharyya, Kornikar Sen,  and Ujjwal Sen, “Harnessing energy extracted from heat engines to charge quantum batteries,”  (2023), arXiv:2309.15634 [quant-ph] .
  16. Saikat Sur and Arnab Ghosh, “Quantum advantage of thermal machines with bose and fermi gases,” Entropy 25, 372 (2023).
  17. Gershon Kurizki and Abraham G Kofman, Thermodynamics and Control of Open Quantum Systems (Cambridge University Press, 2022).
  18. Amikam Levy and Ronnie Kosloff, “Quantum absorption refrigerator,” Phys. Rev. Lett. 108, 070604 (2012).
  19. Noah Linden, Sandu Popescu,  and Paul Skrzypczyk, “How small can thermal machines be? the smallest possible refrigerator,” Phys. Rev. Lett. 105, 130401 (2010).
  20. Chiranjib Mukhopadhyay, Avijit Misra, Samyadeb Bhattacharya,  and Arun Kumar Pati, “Quantum speed limit constraints on a nanoscale autonomous refrigerator,” Physical Review E 97 (2018), 10.1103/physreve.97.062116.
  21. Sreetama Das, Avijit Misra, Amit Kumar Pal, Aditi Sen(De),  and Ujjwal Sen, “Necessarily transient quantum refrigerator,” EPL (Europhysics Letters) 125, 20007 (2019).
  22. Tanaya Ray, Sayan Mondal, Aparajita Bhattacharyya, Ahana Ghoshal, Debraj Rakshit,  and Ujjwal Sen, “Kerr-type nonlinear baths enhance cooling in quantum refrigerators,”  (2023), arXiv:2311.10499 [quant-ph] .
  23. M Tahir Naseem, Avijit Misra,  and Özgür E Müstecaplıoğlu, “Two-body quantum absorption refrigerators with optomechanical-like interactions,” Quantum Science and Technology 5, 035006 (2020).
  24. Cahit Karg ı, M. Tahir Naseem, Tomá š Opatrný, Özgür E. Müstecaplıoğlu,  and Gershon Kurizki, “Quantum optical two-atom thermal diode,” Phys. Rev. E 99, 042121 (2019).
  25. Riddhi Ghosh, Ahana Ghoshal,  and Ujjwal Sen, “Quantum thermal transistors: Operation characteristics in steady state versus transient regimes,” Phys. Rev. A 103, 052613 (2021).
  26. Karl Joulain, Jérémie Drevillon, Younès Ezzahri,  and Jose Ordonez-Miranda, “Quantum thermal transistor,” Physical Review Letters 116 (2016), 10.1103/physrevlett.116.200601.
  27. Arghya Maity, Paranjoy Chaki, Ahana Ghoshal,  and Ujjwal Sen, “Quantum heat transformers,”  (2024), arXiv:2404.00584 [quant-ph] .
  28. Johannes Roßnagel, Samuel T Dawkins, Karl N Tolazzi, Obinna Abah, Eric Lutz, Ferdinand Schmidt-Kaler,  and Kilian Singer, “A single-atom heat engine,” Science 352, 325–329 (2016).
  29. Gleb Maslennikov, Shiqian Ding, Roland Hablützel, Jaren Gan, Alexandre Roulet, Stefan Nimmrichter, Jibo Dai, Valerio Scarani,  and Dzmitry Matsukevich, “Quantum absorption refrigerator with trapped ions,” Nature communications 10, 1–8 (2019).
  30. D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J. Schulz, Mark T. Mitchison, John Goold, F. Schmidt-Kaler,  and U. G. Poschinger, “Spin heat engine coupled to a harmonic-oscillator flywheel,” Phys. Rev. Lett. 123, 080602 (2019).
  31. John PS Peterson, Tiago B Batalhão, Marcela Herrera, Alexandre M Souza, Roberto S Sarthour, Ivan S Oliveira,  and Roberto M Serra, “Experimental characterization of a spin quantum heat engine,” Physical review letters 123, 240601 (2019).
  32. James Klatzow, Jonas N Becker, Patrick M Ledingham, Christian Weinzetl, Krzysztof T Kaczmarek, Dylan J Saunders, Joshua Nunn, Ian A Walmsley, Raam Uzdin,  and Eilon Poem, “Experimental demonstration of quantum effects in the operation of microscopic heat engines,” Physical Review Letters 122, 110601 (2019).
  33. Marlan O. Scully, “Extracting work from a single heat bath via vanishing quantum coherence ii: Microscopic model,” AIP Conf. Proc. 643, 83–91 (2002).
  34. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer,  and E. Lutz, “Nanoscale heat engine beyond the carnot limit,” Phys. Rev. Lett. 112, 030602 (2014).
  35. Bartłomiej Gardas and Sebastian Deffner, “Thermodynamic universality of quantum carnot engines,” Phys. Rev. E 92, 042126 (2015).
  36. Wolfgang Niedenzu, Victor Mukherjee, Arnab Ghosh, Abraham G. Kofman,  and Gershon Kurizki, “Quantum engine efficiency bound beyond the second law of thermodynamics,” Nature Communications 9, 165 (2018).
  37. Gentaro Watanabe, B Prasanna Venkatesh, Peter Talkner,  and Adolfo Del Campo, “Quantum performance of thermal machines over many cycles,” Physical review letters 118, 050601 (2017).
  38. Patrice A Camati, Jonas FG Santos,  and Roberto M Serra, “Coherence effects in the performance of the quantum otto heat engine,” Physical Review A 99, 062103 (2019).
  39. Cyril Elouard, David A Herrera-Martí, Maxime Clusel,  and Alexia Auffèves, “The role of quantum measurement in stochastic thermodynamics,” npj Quantum Information 3, 9 (2017a).
  40. Cyril Elouard, David Herrera-Martí, Benjamin Huard,  and Alexia Auffeves, “Extracting work from quantum measurement in maxwell’s demon engines,” Physical Review Letters 118, 260603 (2017b).
  41. Nathanaël Cottet, Sébastien Jezouin, Landry Bretheau, Philippe Campagne-Ibarcq, Quentin Ficheux, Janet Anders, Alexia Auffèves, Rémi Azouit, Pierre Rouchon,  and Benjamin Huard, “Observing a quantum maxwell demon at work,” Proceedings of the National Academy of Sciences 114, 7561–7564 (2017).
  42. Jonas FG Santos and Pritam Chattopadhyay, “Pt-symmetry effects in measurement-based quantum thermal machines,” Physica A: Statistical Mechanics and its Applications 632, 129342 (2023).
  43. Ronnie Kosloff and Yair Rezek, “The quantum harmonic otto cycle,” Entropy 19, 136 (2017).
  44. Juan Jaramillo, Mathieu Beau,  and Adolfo del Campo, “Quantum supremacy of many-particle thermal machines,” New J. Phys. 18, 075019 (2016).
  45. Matteo Polettini, Gatien Verley,  and Massimiliano Esposito, “Efficiency statistics at all times: Carnot limit at finite power,” Physical review letters 114, 050601 (2015).
  46. Mojde Fadaie, Elif Yunt,  and Özgür E. Müstecaplıoğlu, “Topological phase transition in quantum-heat-engine cycles,” Phys. Rev. E 98, 052124 (2018).
  47. Michele Campisi and Rosario Fazio, “The power of a critical heat engine,” Nat. Commun. 7, 11895 (2016).
  48. Nicole Yunger Halpern, Christopher David White, Sarang Gopalakrishnan,  and Gil Refael, “Quantum engine based on many-body localization,” Physical Review B 99, 024203 (2019).
  49. Ali Ü C Hardal and Özgür E Müstecaplıoğlu, “Superradiant quantum heat engine,” Sci. Rep. 5, 12953 (2015).
  50. Jiawen Deng, Qing-hai Wang, Zhihao Liu, Peter Hänggi,  and Jiangbin Gong, “Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: Quantum and classical systems,” Phys. Rev. E 88, 062122 (2013).
  51. A del Campo, John Goold,  and Mauro Paternostro, “More bang for your buck: Super-adiabatic quantum engines,” Scientific reports 4, 6208 (2014).
  52. Mathieu Beau, Juan Jaramillo,  and Adolfo Del Campo, “Scaling-up quantum heat engines efficiently via shortcuts to adiabaticity,” Entropy 18, 168 (2016).
  53. Felix Binder, Luis A Correa, Christian Gogolin, Janet Anders,  and Gerardo Adesso, “Thermodynamics in the quantum regime,” Fundamental Theories of Physics 195, 1–2 (2018).
  54. J Bengtsson, M Nilsson Tengstrand, A Wacker, P Samuelsson, M Ueda, H Linke,  and SM Reimann, “Quantum szilard engine with attractively interacting bosons,” Physical Review Letters 120, 100601 (2018).
  55. Yang-Yang Chen, Gentaro Watanabe, Yi-Cong Yu, Xi-Wen Guan,  and Adolfo del Campo, “An interaction-driven many-particle quantum heat engine and its universal behavior,” npj Quantum Information 5, 88 (2019).
  56. Elbio Dagotto, “Complexity in strongly correlated electronic systems,” Science 309, 257 (2005).
  57. Dmytro Pesin and Leon Balents, “Mott physics and band topology in materials with strong spin–orbit interaction,” Nature Physics 6, 376 (2010).
  58. D. N. Basov, Richard D. Averitt, Dirk van der Marel, Martin Dressel,  and Kristjan Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–541 (2011).
  59. Yoshiki Imai and Norio Kawakami, “Spectral functions in itinerant electron systems with geometrical frustration,” Phys. Rev. B 65, 233103 (2002).
  60. O. Parcollet, G. Biroli,  and G. Kotliar, “Cluster dynamical mean field analysis of the mott transition,” Phys. Rev. Lett. 92, 226402 (2004).
  61. B. Kyung and A.-M. S. Tremblay, “Mott transition, antiferromagnetism, and d𝑑ditalic_d-wave superconductivity in two-dimensional organic conductors,” Phys. Rev. Lett. 97, 046402 (2006).
  62. Takuma Ohashi, Tsutomu Momoi, Hirokazu Tsunetsugu,  and Norio Kawakami, “Finite temperature mott transition in hubbard model on anisotropic triangular lattice,” Phys. Rev. Lett. 100, 076402 (2008).
  63. Alexander Wietek, Riccardo Rossi, Fedor Šimkovic, Marcel Klett, Philipp Hansmann, Michel Ferrero, E. Miles Stoudenmire, Thomas Schäfer,  and Antoine Georges, “Mott insulating states with competing orders in the triangular lattice hubbard model,” Phys. Rev. X 11, 041013 (2021).
  64. Josef Kaufmann, Klaus Steiner, Richard T. Scalettar, Karsten Held,  and Oleg Janson, “How correlations change the magnetic structure factor of the kagome hubbard model,” Phys. Rev. B 104, 165127 (2021).
  65. Andressa R. Medeiros-Silva, Natanael C. Costa,  and Thereza Paiva, “Thermodynamic, magnetic, and transport properties of the repulsive hubbard model on the kagome lattice,” Phys. Rev. B 107, 035134 (2023).
  66. Shintaro Taie, Hideki Ozawa, Tomohiro Ichinose, Takuei Nishio, Shuta Nakajima,  and Yoshiro Takahashi, “Coherent driving and freezing of bosonic matter wave in an optical lieb lattice,” Science Advances 1, e1500854 (2015).
  67. Hideki Ozawa, Shintaro Taie, Tomohiro Ichinose,  and Yoshiro Takahashi, “Interaction-driven shift and distortion of a flat band in an optical lieb lattice,” Phys. Rev. Lett. 118, 175301 (2017).
  68. Rodrigo A. Vicencio, Camilo Cantillano, Luis Morales-Inostroza, Bastián Real, Cristian Mejía-Cortés, Steffen Weimann, Alexander Szameit,  and Mario I. Molina, “Observation of localized states in lieb photonic lattices,” Phys. Rev. Lett. 114, 245503 (2015).
  69. Shiqiang Xia, Yi Hu, Daohong Song, Yuanyuan Zong, Liqin Tang,  and Zhigang Chen, “Demonstration of flat-band image transmission in optically induced lieb photonic lattices,” Opt. Lett. 41, 1435 (2016).
  70. Sebabrata Mukherjee and Robert R. Thomson, “Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice,” Opt. Lett. 40, 5443 (2015).
  71. Robert Drost, Teemu Ojanen, Ari Harju,  and Peter Liljeroth, “Topological states in engineered atomic lattices,” Nature Physics 13, 668 (2017).
  72. Marlou R. Slot, Thomas S. Gardenier, Peter H. Jacobse, Guido C. P. van Miert, Sander N. Kempkes, Stephan J. M. Zevenhuizen, Cristiane Morais Smith, Daniel Vanmaekelbergh,  and Ingmar Swart, “Experimental realization and characterization of an electronic lieb lattice,” Nature Physics 13, 672 (2017).
  73. Wen-Xuan Qiu, Shuai Li, Jin-Hua Gao, Yi Zhou,  and Fu-Chun Zhang, “Designing an artificial lieb lattice on a metal surface,” Phys. Rev. B 94, 241409 (2016).
  74. Xiaojuan Ni, Hong Li, Feng Liu,  and Jean-Luc Brédas, “Engineering of flat bands and dirac bands in two-dimensional covalent organic frameworks (cofs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics,” Mater. Horiz. 9, 88 (2022).
  75. Shashikant Singh Kunwar and Madhuparna Karmakar, “Kagome hubbard model away from the strong coupling limit: Flat band localization and non fermi liquid signatures,”   (2024), arXiv:2404.05787 [cond-mat.str-el] .
  76. George Thomas, Debmalya Das,  and Sibasish Ghosh, “Quantum heat engine based on level degeneracy,” Phys. Rev. E 100, 012123 (2019).
  77. S Hamedani Raja, S Maniscalco, G S Paraoanu, J P Pekola,  and N Lo Gullo, “Finite-time quantum stirling heat engine,” New Journal of Physics 23, 033034 (2021).
  78. Pritam Chattopadhyay and Goutam Paul, “Relativistic quantum heat engine from uncertainty relation standpoint,” Scientific reports 9, 16967 (2019).
  79. Pritam Chattopadhyay, Ayan Mitra, Goutam Paul,  and Vasilios Zarikas, “Bound on efficiency of heat engine from uncertainty relation viewpoint,” Entropy 23, 439 (2021b).
  80. Pritam Chattopadhyay, “Non-commutative space: boon or bane for quantum engines and refrigerators,” The European Physical Journal Plus 135, 1–11 (2020).
  81. J. Hubbard, “Calculation of partition functions,” Phys. Rev. Lett. 3, 77–78 (1959).
  82. H. J. Schulz, “Effective action for strongly correlated fermions from functional integrals,” Phys. Rev. Lett. 65, 2462–2465 (1990).
  83. Avijit Misra, Uttam Singh, Manabendra Nath Bera,  and A. K. Rajagopal, “Quantum rényi relative entropies affirm universality of thermodynamics,” Physical Review E 92 (2015), 10.1103/physreve.92.042161.
  84. Paul Skrzypczyk, Anthony J. Short,  and Sandu Popescu, “Work extraction and thermodynamics for individual quantum systems,” Nature Communications 5 (2014), 10.1038/ncomms5185.
  85. Wei Jiang, Meng Kang, Huaqing Huang, Hongxing Xu, Tony Low,  and Feng Liu, “Topological band evolution between lieb and kagome lattices,” Phys. Rev. B 99, 125131 (2019a).
  86. Wei Jiang, Meng Kang, Huaqing Huang, Hongxing Xu, Tony Low,  and Feng Liu, “Topological band evolution between lieb and kagome lattices,” Physical Review B 99, 125131 (2019b).
  87. C. Walsh, P. Sémon, D. Poulin, G. Sordi,  and A.-M. S. Tremblay, “Entanglement and classical correlations at the doping-driven mott transition in the two-dimensional hubbard model,” PRX Quantum 1, 020310 (2020).
  88. C. Walsh, P. Sémon, D. Poulin, G. Sordi,  and A.-M. S. Tremblay, “Thermodynamic and information-theoretic description of the mott transition in the two-dimensional hubbard model,” Phys. Rev. B 99, 075122 (2019a).
  89. C. Walsh, P. Sémon, D. Poulin, G. Sordi,  and A.-M. S. Tremblay, “Local entanglement entropy and mutual information across the mott transition in the two-dimensional hubbard model,” Phys. Rev. Lett. 122, 067203 (2019b).
  90. Qiong Qin, Jian-Jun Dong, Yutao Sheng, Dongchen Huang,  and Yi-feng Yang, “Superconducting fluctuations and charge-4e𝑒eitalic_e plaquette state at strong coupling,” Phys. Rev. B 108, 054506 (2023).
  91. R. W. D. Nickalls, “Viète, descartes and the cubic equation,” The Mathematical Gazette 90, 203–208 (2006).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.