Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Parallel Algorithms for Dendrogram Computation and Single-Linkage Clustering

Published 29 Apr 2024 in cs.DS and cs.DC | (2404.19019v2)

Abstract: Computing a Single-Linkage Dendrogram (SLD) is a key step in the classic single-linkage hierarchical clustering algorithm. Given an input edge-weighted tree $T$, the SLD of $T$ is a binary dendrogram that summarizes the $n-1$ clusterings obtained by contracting the edges of $T$ in order of weight. Existing algorithms for computing the SLD all require $\Omega(n\log n)$ work where $n = |T|$. Furthermore, to the best of our knowledge no prior work provides a parallel algorithm obtaining non-trivial speedup for this problem. In this paper, we design faster parallel algorithms for computing SLDs both in theory and in practice based on new structural results about SLDs. In particular, we obtain a deterministic output-sensitive parallel algorithm based on parallel tree contraction that requires $O(n \log h)$ work and $O(\log2 n \log2 h)$ depth, where $h$ is the height of the output SLD. We also give a deterministic bottom-up algorithm for the problem inspired by the nearest-neighbor chain algorithm for hierarchical agglomerative clustering, and show that it achieves $O(n\log h)$ work and $O(h \log n)$ depth. Our results are based on a novel divide-and-conquer framework for building SLDs, inspired by divide-and-conquer algorithms for Cartesian trees. Our new algorithms can quickly compute the SLD on billion-scale trees, and obtain up to 150x speedup over the highly-efficient Union-Find algorithm typically used to compute SLDs in practice.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 0 likes about this paper.