Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Chirality-induced spin selectivity by variable-range hopping along DNA double helix (2404.19000v1)

Published 29 Apr 2024 in cond-mat.mes-hall and cond-mat.dis-nn

Abstract: We here present a variable-range hopping model to describe the chirality-induced spin selectivity along the DNA double helix. In this model, DNA is considered as a one-dimensional disordered system, where electrons are transported by chiral phonon-assisted hopping between localized states. Owing to the coupling between the electron spin and the vorticity of chiral phonons, electric toroidal monopole appears in the charge-to-spin conductances as a manifestation of true chirality. Our model quantitatively explains the temperature dependence of the spin polarization observed in experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (130)
  1. Laurence D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University Press, 2004).
  2. Georges H. Wagnière, On Chirality and the Universal Asymmetry: Reflections on Image and Mirror Image (Wiley-VCH, 2007).
  3. Laurence David Barron, “True and false chirality and absolute enantioselection,” Rendiconti Lincei 24, 179–189 (2013).
  4. B. Göhler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman,  and H. Zacharias, “Spin selectivity in electron transmission through self-assembled monolayers of double-stranded dna,” Science 331, 894–897 (2011).
  5. Zouti Xie, Tal Z. Markus, Sidney R. Cohen, Zeev Vager, Rafael Gutierrez,  and Ron Naaman, “Spin specific electron conduction through dna oligomers,” Nano Letters 11, 4652–4655 (2011).
  6. R. Naaman and David H. Waldeck, “Chiral-induced spin selectivity effect,” The Journal of Physical Chemistry Letters 3, 2178–2187 (2012).
  7. Ron Naaman and David H. Waldeck, “Spintronics and chirality: Spin selectivity in electron transport through chiral molecules,” Annual Review of Physical Chemistry 66, 263–281 (2015).
  8. Ron Naaman, Yossi Paltiel,  and David H. Waldeck, “Chiral molecules and the electron spin,” Nature Reviews Chemistry 3, 250–260 (2019).
  9. R. Naaman, Y. Paltiel,  and D. H. Waldeck, “Chiral molecules and the spin selectivity effect,” The Journal of Physical Chemistry Letters 11, 3660–3666 (2020a).
  10. D. H. Waldeck, R. Naaman,  and Y. Paltiel, “The spin selectivity effect in chiral materials,” APL Materials 9, 040902 (2021).
  11. Alexandre R. Rocha, Víctor M. García-suárez, Steve W. Bailey, Colin J. Lambert, Jaime Ferrer,  and Stefano Sanvito, “Towards molecular spintronics,” Nature Materials 4, 335–339 (2005).
  12. Stefano Sanvito, “Molecular spintronics,” Chem. Soc. Rev. 40, 3336–3355 (2011).
  13. Karen Michaeli, Vaibhav Varade, Ron Naaman,  and David H Waldeck, “A new approach towards spintronics–spintronics with no magnets,” Journal of Physics: Condensed Matter 29, 103002 (2017).
  14. See-Hun Yang, Ron Naaman, Yossi Paltiel,  and Stuart S. P. Parkin, “Chiral spintronics,” Nature Reviews Physics 3, 328–343 (2021).
  15. Oren Ben Dor, Shira Yochelis, Shinto P. Mathew, Ron Naaman,  and Yossi Paltiel, “A chiral-based magnetic memory device without a permanent magnet,” Nature Communications 4, 2256 (2013).
  16. Karen Michaeli, Nirit Kantor-Uriel, Ron Naaman,  and David H. Waldeck, “The electron’s spin and molecular chirality – how are they related and how do they affect life processes?” Chem. Soc. Rev. 45, 6478–6487 (2016).
  17. Oren Ben Dor, Shira Yochelis, Anna Radko, Kiran Vankayala, Eyal Capua, Amir Capua, See-Hun Yang, Lech Tomasz Baczewski, Stuart Stephen Papworth Parkin, Ron Naaman,  and Yossi Paltiel, “Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field,” Nature Communications 8, 14567 (2017).
  18. Wilbert Mtangi, Francesco Tassinari, Kiran Vankayala, Andreas Vargas Jentzsch, Beatrice Adelizzi, Anja R. A. Palmans, Claudio Fontanesi, E. W. Meijer,  and Ron Naaman, “Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting,” Journal of the American Chemical Society 139, 2794–2798 (2017).
  19. Koyel Banerjee-Ghosh, Oren Ben Dor, Francesco Tassinari, Eyal Capua, Shira Yochelis, Amir Capua, See-Hun Yang, Stuart S. P. Parkin, Soumyajit Sarkar, Leeor Kronik, Lech Tomasz Baczewski, Ron Naaman,  and Yossi Paltiel, “Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates,” Science 360, 1331–1334 (2018).
  20. Francesco Tassinari, Jakob Steidel, Shahar Paltiel, Claudio Fontanesi, Meir Lahav, Yossi Paltiel,  and Ron Naaman, “Enantioseparation by crystallization using magnetic substrates,” Chem. Sci. 10, 5246–5250 (2019).
  21. Ron Naaman, Yossi Paltiel,  and David H. Waldeck, “Chiral induced spin selectivity gives a new twist on spin-control in chemistry,” Accounts of Chemical Research 53, 2659–2667 (2020b).
  22. Brian P. Bloom, Yossi Paltiel, Ron Naaman,  and David H. Waldeck, “Chiral induced spin selectivity,” Chemical Reviews 124, 1950–1991 (2024).
  23. Sina Yeganeh, Mark A. Ratner, Ernesto Medina,  and Vladimiro Mujica, “Chiral electron transport: Scattering through helical potentials,” The Journal of Chemical Physics 131, 014707 (2009).
  24. Ai-Min Guo and Qing-feng Sun, “Spin-selective transport of electrons in dna double helix,” Phys. Rev. Lett. 108, 218102 (2012).
  25. Karuppannan Senthil Kumar, Nirit Kantor-Uriel, Shinto Pulinthanathu Mathew, Rahamim Guliamov,  and Ron Naaman, “A device for measuring spin selectivity in electron transfer,” Phys. Chem. Chem. Phys. 15, 18357–18362 (2013).
  26. Joel Gersten, Kristen Kaasbjerg,  and Abraham Nitzan, “Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling,” The Journal of Chemical Physics 139, 114111 (2013).
  27. Ai-Min Guo and Qing-Feng Sun, “Spin-dependent electron transport in protein-like single-helical molecules,” Proceedings of the National Academy of Sciences 111, 11658–11662 (2014).
  28. M. Kettner, B. Göhler, H. Zacharias, D. Mishra, V. Kiran, R. Naaman, David H. Waldeck, Sławomir Sęk, Jan Pawłowski,  and Joanna Juhaniewicz, “Spin filtering in electron transport through chiral oligopeptides,” The Journal of Physical Chemistry C 119, 14542–14547 (2015).
  29. Theodore J. Zwang, Sylvia Hürlimann, Michael G. Hill,  and Jacqueline K. Barton, “Helix-dependent spin filtering through the dna duplex,” Journal of the American Chemical Society 138, 15551–15554 (2016).
  30. Shlomi Matityahu, Yasuhiro Utsumi, Amnon Aharony, Ora Entin-Wohlman,  and Carlos A. Balseiro, “Spin-dependent transport through a chiral molecule in the presence of spin-orbit interaction and nonunitary effects,” Phys. Rev. B 93, 075407 (2016).
  31. Anup Kumar, Eyal Capua, Manoj K. Kesharwani, Jan M. L. Martin, Einat Sitbon, David H. Waldeck,  and Ron Naaman, “Chirality-induced spin polarization places symmetry constraints on biomolecular interactions,” Proceedings of the National Academy of Sciences 114, 2474–2478 (2017).
  32. Xu Yang, Caspar H. van der Wal,  and Bart J. van Wees, “Spin-dependent electron transmission model for chiral molecules in mesoscopic devices,” Phys. Rev. B 99, 024418 (2019).
  33. Sakse Dalum and Per Hedegård, “Theory of chiral induced spin selectivity,” Nano Letters 19, 5253–5259 (2019).
  34. J. Fransson, “Chirality-induced spin selectivity: The role of electron correlations,” The Journal of Physical Chemistry Letters 10, 7126–7132 (2019).
  35. Masayuki Suda, Yuranan Thathong, Vinich Promarak, Hirotaka Kojima, Masakazu Nakamura, Takafumi Shiraogawa, Masahiro Ehara,  and Hiroshi M. Yamamoto, “Light-driven molecular switch for reconfigurable spin filters,” Nature Communications 10, 2455 (2019).
  36. Suryakant Mishra, Amit Kumar Mondal, Shubhadeep Pal, Tapan Kumar Das, Eilam Z. B. Smolinsky, Giuliano Siligardi,  and Ron Naaman, “Length-dependent electron spin polarization in oligopeptides and dna,” The Journal of Physical Chemistry C 124, 10776–10782 (2020).
  37. Gui-Fang Du, Hua-Hua Fu,  and Ruqian Wu, “Vibration-enhanced spin-selective transport of electrons in the dna double helix,” Phys. Rev. B 102, 035431 (2020).
  38. Longlong Zhang, Yuying Hao, Wei Qin, Shijie Xie,  and Fanyao Qu, “Chiral-induced spin selectivity: A polaron transport model,” Phys. Rev. B 102, 214303 (2020).
  39. J. Fransson, “Vibrational origin of exchange splitting and ”chiral-induced spin selectivity,” Phys. Rev. B 102, 235416 (2020).
  40. Xiaopeng Li, Jue Nan,  and Xiangcheng Pan, “Chiral induced spin selectivity as a spontaneous intertwined order,” Phys. Rev. Lett. 125, 263002 (2020).
  41. Xu Yang, Caspar H. van der Wal,  and Bart J. van Wees, “Detecting chirality in two-terminal electronic nanodevices,” Nano Letters 20, 6148–6154 (2020).
  42. Arezoo Dianat, Rafael Gutierrez, Hen Alpern, Vladimiro Mujica, Amir Ziv, Shira Yochelis, Oded Millo, Yossi Paltiel,  and Gianaurelio Cuniberti, “Role of exchange interactions in the magnetic response and intermolecular recognition of chiral molecules,” Nano Letters 20, 7077–7086 (2020).
  43. Martin Sebastian Zöllner, Solmar Varela, Ernesto Medina, Vladimiro Mujica,  and Carmen Herrmann, “Insight into the origin of chiral-induced spin selectivity from a symmetry analysis of electronic transmission,” Journal of Chemical Theory and Computation 16, 2914–2929 (2020).
  44. Akito Inui, Ryuya Aoki, Yuki Nishiue, Kohei Shiota, Yusuke Kousaka, Hiroaki Shishido, Daichi Hirobe, Masayuki Suda, Jun-ichiro Ohe, Jun-ichiro Kishine, Hiroshi M. Yamamoto,  and Yoshihiko Togawa, “Chirality-induced spin-polarized state of a chiral crystal crnb3⁢s6subscriptcrnb3subscripts6{\mathrm{crnb}}_{3}{\mathrm{s}}_{6}roman_crnb start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_s start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT,” Phys. Rev. Lett. 124, 166602 (2020).
  45. Yoji Nabei, Daichi Hirobe, Yusuke Shimamoto, Kohei Shiota, Akito Inui, Yusuke Kousaka, Yoshihiko Togawa,  and Hiroshi M. Yamamoto, “Current-induced bulk magnetization of a chiral crystal CrNb3S6,” Applied Physics Letters 117, 052408 (2020).
  46. Kohei Shiota, Akito Inui, Yuta Hosaka, Ryoga Amano, Yoshichika Ōnuki, Masato Hedo, Takao Nakama, Daichi Hirobe, Jun-ichiro Ohe, Jun-ichiro Kishine, Hiroshi M. Yamamoto, Hiroaki Shishido,  and Yoshihiko Togawa, “Chirality-induced spin polarization over macroscopic distances in chiral disilicide crystals,” Phys. Rev. Lett. 127, 126602 (2021).
  47. Hiroaki Shishido, Rei Sakai, Yuta Hosaka,  and Yoshihiko Togawa, “Detection of chirality-induced spin polarization over millimeters in polycrystalline bulk samples of chiral disilicides NbSi2 and TaSi2,” Applied Physics Letters 119, 182403 (2021).
  48. Jonas Fransson, “Charge redistribution and spin polarization driven by correlation induced electron exchange in chiral molecules,” Nano Letters 21, 3026–3032 (2021).
  49. Yizhou Liu, Jiewen Xiao, Jahyun Koo,  and Binghai Yan, “Chirality-driven topological electronic structure of dna-like materials,” Nature Materials 20, 638–644 (2021).
  50. Cheng-Zhen Wang, Vladimiro Mujica,  and Ying-Cheng Lai, “Spin fano resonances in chiral molecules: An alternative mechanism for the ciss effect and experimental implications,” Nano Letters 21, 10423–10430 (2021).
  51. Seif Alwan and Yonatan Dubi, “Spinterface origin for the chirality-induced spin-selectivity effect,” Journal of the American Chemical Society 143, 14235–14241 (2021).
  52. J. Fransson, “Charge and spin dynamics and enantioselectivity in chiral molecules,” The Journal of Physical Chemistry Letters 13, 808–814 (2022a), pMID: 35068158.
  53. Clemens Vittmann, R. Kevin Kessing, James Lim, Susana F. Huelga,  and Martin B. Plenio, “Interface-induced conservation of momentum leads to chiral-induced spin selectivity,” The Journal of Physical Chemistry Letters 13, 1791–1796 (2022).
  54. Ferdinand Evers, Amnon Aharony, Nir Bar-Gill, Ora Entin-Wohlman, Per Hedegård, Oded Hod, Pavel Jelinek, Grzegorz Kamieniarz, Mikhail Lemeshko, Karen Michaeli, Vladimiro Mujica, Ron Naaman, Yossi Paltiel, Sivan Refaely-Abramson, Oren Tal, Jos Thijssen, Michael Thoss, Jan M. van Ruitenbeek, Latha Venkataraman, David H. Waldeck, Binghai Yan,  and Leeor Kronik, “Theory of chirality induced spin selectivity: Progress and challenges,” Advanced Materials 34, 2106629 (2022).
  55. Tapan Kumar Das, Francesco Tassinari, Ron Naaman,  and Jonas Fransson, “Temperature-dependent chiral-induced spin selectivity effect: Experiments and theory,” The Journal of Physical Chemistry C 126, 3257–3264 (2022a).
  56. Caleb Clever, Emil Wierzbinski, Brian P. Bloom, Yiyang Lu, Haley M. Grimm, Shilpa R. Rao, W. Seth Horne,  and David H. Waldeck, “Benchmarking chiral induced spin selectivity measurements - towards meaningful comparisons of chiral biomolecule spin polarizations,” Israel Journal of Chemistry 62, e202200045 (2022).
  57. Qi Qian, Huaying Ren, Jingyuan Zhou, Zhong Wan, Jingxuan Zhou, Xingxu Yan, Jin Cai, Peiqi Wang, Bailing Li, Zdenek Sofer, Bo Li, Xidong Duan, Xiaoqing Pan, Yu Huang,  and Xiangfeng Duan, “Chiral molecular intercalation superlattices,” Nature 606, 902–908 (2022).
  58. Clarice D. Aiello, John M. Abendroth, Muneer Abbas, Andrei Afanasev, Shivang Agarwal, Amartya S. Banerjee, David N. Beratan, Jason N. Belling, Bertrand Berche, Antia Botana, Justin R. Caram, Giuseppe Luca Celardo, Gianaurelio Cuniberti, Aitzol Garcia-Etxarri, Arezoo Dianat, Ismael Diez-Perez, Yuqi Guo, Rafael Gutierrez, Carmen Herrmann, Joshua Hihath, Suneet Kale, Philip Kurian, Ying-Cheng Lai, Tianhan Liu, Alexander Lopez, Ernesto Medina, Vladimiro Mujica, Ron Naaman, Mohammadreza Noormandipour, Julio L. Palma, Yossi Paltiel, William Petuskey, João Carlos Ribeiro-Silva, Juan José Saenz, Elton J. G. Santos, Maria Solyanik-Gorgone, Volker J. Sorger, Dominik M. Stemer, Jesus M. Ugalde, Ana Valdes-Curiel, Solmar Varela, David H. Waldeck, Michael R. Wasielewski, Paul S. Weiss, Helmut Zacharias,  and Qing Hua Wang, “A chirality-based quantum leap,” ACS Nano 16, 4989–5035 (2022).
  59. Kouta Kondou, Masanobu Shiga, Shoya Sakamoto, Hiroyuki Inuzuka, Atsuko Nihonyanagi, Fumito Araoka, Masaki Kobayashi, Shinji Miwa, Daigo Miyajima,  and YoshiChika Otani, “Chirality-induced magnetoresistance due to thermally driven spin polarization,” Journal of the American Chemical Society 144, 7302–7307 (2022).
  60. Chih-Hung Ko, Qirong Zhu, Francesco Tassinari, George Bullard, Peng Zhang, David N. Beratan, Ron Naaman,  and Michael J. Therien, “Twisted molecular wires polarize spin currents at room temperature,” Proceedings of the National Academy of Sciences 119, e2116180119 (2022).
  61. Tapan Kumar Das, Francesco Tassinari, Ron Naaman,  and Jonas Fransson, “Temperature-dependent chiral-induced spin selectivity effect: Experiments and theory,” The Journal of Physical Chemistry C 126, 3257–3264 (2022b).
  62. J. Fransson, “The chiral induced spin selectivity effect what it is, what it is not, and why it matters,” Israel Journal of Chemistry 62, e202200046 (2022b).
  63. Akihito Kato, Hiroshi M. Yamamoto,  and Jun-ichiro Kishine, “Chirality-induced spin filtering in pseudo jahn-teller molecules,” Phys. Rev. B 105, 195117 (2022).
  64. Yonatan Dubi, “Spinterface chirality-induced spin selectivity effect in bio-molecules,” Chem. Sci. 13, 10878–10883 (2022).
  65. Sumit Naskar, Vladimiro Mujica,  and Carmen Herrmann, “Chiral-induced spin selectivity and non-equilibrium spin accumulation in molecules and interfaces: A first-principles study,” The Journal of Physical Chemistry Letters 14, 694–701 (2023).
  66. J. Fransson, “Chiral phonon induced spin polarization,” Phys. Rev. Res. 5, L022039 (2023a).
  67. J. Fransson, “Temperature activated chiral induced spin selectivity,” The Journal of Chemical Physics 159, 084115 (2023b).
  68. M. A. García-Blázquez, W. Dednam,  and J. J. Palacios, “Nonequilibrium magneto-conductance as a manifestation of spin filtering in chiral nanojunctions,” The Journal of Physical Chemistry Letters 14, 7931–7939 (2023).
  69. Clemens Vittmann, James Lim, Dario Tamascelli, Susana F. Huelga,  and Martin B. Plenio, “Spin-dependent momentum conservation of electron–phonon scattering in chirality-induced spin selectivity,” The Journal of Physical Chemistry Letters 14, 340–346 (2023).
  70. R. Nakajima, D. Hirobe, G. Kawaguchi, Y. Nabei, T. Sato, T. Narushima, H. Okamoto,  and H. M. Yamamoto, “Giant spin polarization and a pair of antiparallel spins in a chiral superconductor,” Nature 613, 479–484 (2023).
  71. Hannah J. Eckvahl, Nikolai A. Tcyrulnikov, Alessandro Chiesa, Jillian M. Bradley, Ryan M. Young, Stefano Carretta, Matthew D. Krzyaniak,  and Michael R. Wasielewski, “Direct observation of chirality-induced spin selectivity in electron donor–acceptor molecules,” Science 382, 197–201 (2023).
  72. Kouta Kondou, Shinji Miwa,  and Daigo Miyajima, “Spontaneous spin selectivity in chiral molecules at the interface,” Journal of Magnetism and Magnetic Materials 585, 171157 (2023).
  73. Seif Alwan, Subhajit Sarkar, Amos Sharoni,  and Yonatan Dubi, “Temperature-dependence of the chirality-induced spin selectivity effect—Experiments and theory,” The Journal of Chemical Physics 159, 014106 (2023).
  74. Chen Yang, Yanwei Li, Shuyao Zhou, Yilin Guo, Chuancheng Jia, Zhirong Liu, Kendall N. Houk, Yonatan Dubi,  and Xuefeng Guo, “Real-time monitoring of reaction stereochemistry through single-molecule observations of chirality-induced spin selectivity,” Nature Chemistry 15, 972–979 (2023).
  75. Yusuke Kousaka, Taisei Sayo, Satoshi Iwasaki, Ryo Saki, Chiho Shimada, Hiroaki Shishido,  and Yoshihiko Togawa, “Chirality-selected crystal growth and spin polarization over centimeters of transition metal disilicide crystals,” Japanese Journal of Applied Physics 62, 015506 (2023).
  76. Hiroaki Shishido, Yuta Hosaka, Kenta Monden, Akito Inui, Taisei Sayo, Yusuke Kousaka,  and Yoshihiko Togawa, “Spin polarization gate device based on the chirality-induced spin selectivity and robust nonlocal spin polarization,” The Journal of Chemical Physics 159, 064502 (2023).
  77. Kazuki Ohe, Hiroaki Shishido, Masaki Kato, Shoyo Utsumi, Hiroyasu Matsuura,  and Yoshihiko Togawa, “Chirality-induced selectivity of phonon angular momenta in chiral quartz crystals,” Phys. Rev. Lett. 132, 056302 (2024).
  78. Rui Sun, Kyung Sun Park, Andrew H. Comstock, Aeron McConnell, Yen-Chi Chen, Peng Zhang, David Beratan, Wei You, Axel Hoffmann, Zhi-Gang Yu, Ying Diao,  and Dali Sun, “Inverse chirality-induced spin selectivity effect in chiral assemblies of π𝜋\piitalic_π-conjugated polymers,” Nature Materials  (2024), 10.1038/s41563-024-01838-8.
  79. Sytze H. Tirion and Bart J. van Wees, “A mechanism for electrostatically generated magnetoresistance in chiral systems without spin-dependent transport,”  (2024), arXiv:2402.00472 [cond-mat.mes-hall] .
  80. Binghai Yan, “Structural chirality and electronic chirality in quantum materials,”  (2023), arXiv:2312.03902 [cond-mat.mtrl-sci] .
  81. Ashish Moharana, Yael Kapon, Fabian Kammerbauer, David Anthofer, Shira Yochelis, Mathias Kläui, Yossi Paltiel,  and Angela Wittmann, “Chiral-induced unidirectional spin-to-charge conversion,”  (2024), arXiv:2402.19246 [cond-mat.mes-hall] .
  82. Frederick D. Lewis, Taifeng Wu, Yifan Zhang, Robert L. Letsinger, Scott R. Greenfield,  and Michael R. Wasielewski, “Distance-dependent electron transfer in dna hairpins,” Science 277, 673–676 (1997).
  83. Daniel B. Hall, R. Erik Holmlin,  and Jacqueline K. Barton, “Oxidative dna damage through long-range electron transfer,” Nature 382, 731–735 (1996).
  84. Peter J. Dandliker, R. Erik Holmlin,  and Jacqueline K. Barton, “Oxidative thymine dimer repair in the dna helix,” Science 275, 1465–1468 (1997).
  85. P. Tran, B. Alavi,  and G. Gruner, “Charge transport along the λ𝜆\mathit{\lambda}italic_λ-dna double helix,” Phys. Rev. Lett. 85, 1564–1567 (2000).
  86. Z. G. Yu and Xueyu Song, “Variable range hopping and electrical conductivity along the dna double helix,” Phys. Rev. Lett. 86, 6018–6021 (2001).
  87. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford Clarendon Press, 1979).
  88. B.I. Shklovskii and A.L. Efros, Electronic Properties of Doped Semiconductors (Springer Berlin Heidelberg, 1984).
  89. Lifa Zhang and Qian Niu, “Chiral phonons at high-symmetry points in monolayer hexagonal lattices,” Phys. Rev. Lett. 115, 115502 (2015).
  90. Hao Chen, Wei Zhang, Qian Niu,  and Lifa Zhang, “Chiral phonons in two-dimensional materials,” 2D Materials 6, 012002 (2018).
  91. Hanyu Zhu, Jun Yi, Ming-Yang Li, Jun Xiao, Lifa Zhang, Chih-Wen Yang, Robert A. Kaindl, Lain-Jong Li, Yuan Wang,  and Xiang Zhang, “Observation of chiral phonons,” Science 359, 579–582 (2018).
  92. Xiaotong Chen, Xin Lu, Sudipta Dubey, Qiang Yao, Sheng Liu, Xingzhi Wang, Qihua Xiong, Lifa Zhang,  and Ajit Srivastava, “Entanglement of single-photons and chiral phonons in atomically thin wse2,” Nature Physics 15, 221–227 (2019).
  93. G. Grissonnanche, S. Thériault, A. Gourgout, M.-E. Boulanger, E. Lefrançois, A. Ataei, F. Laliberté, M. Dion, J.-S. Zhou, S. Pyon, T. Takayama, H. Takagi, N. Doiron-Leyraud,  and L. Taillefer, “Chiral phonons in the pseudogap phase of cuprates,” Nature Physics 16, 1108–1111 (2020).
  94. Hao Chen, Weikang Wu, Jiaojiao Zhu, Shengyuan A. Yang,  and Lifa Zhang, “Propagating chiral phonons in three-dimensional materials,” Nano Letters 21, 3060–3065 (2021).
  95. Hao Chen, Weikang Wu, Jiaojiao Zhu, Zhengning Yang, Weikang Gong, Weibo Gao, Shengyuan A. Yang,  and Lifa Zhang, “Chiral phonon diode effect in chiral crystals,” Nano Letters 22, 1688–1693 (2022).
  96. Tiantian Zhang and Shuichi Murakami, “Chiral phonons and pseudoangular momentum in nonsymmorphic systems,” Phys. Rev. Res. 4, L012024 (2022).
  97. Dapeng Yao and Shuichi Murakami, “Chiral-phonon-induced current in helical crystals,” Phys. Rev. B 105, 184412 (2022).
  98. Hisayoshi Komiyama, Tiantian Zhang,  and Shuichi Murakami, “Physics of phonons in systems with approximate screw symmetry,” Phys. Rev. B 106, 184104 (2022).
  99. Jakub Skórka, Konrad J. Kapcia, Paweł T. Jochym,  and Andrzej Ptok, “Chiral phonons in binary compounds abi (a = k, rb, cs) with p21/c structure,” Materials Today Communications 35, 105888 (2023).
  100. Hirokazu Tsunetsugu and Hiroaki Kusunose, “Theory of energy dispersion of chiral phonons,” Journal of the Physical Society of Japan 92, 023601 (2023).
  101. Akihito Kato and Jun-ichiro Kishine, “Note on angular momentum of phonons in chiral crystals,” Journal of the Physical Society of Japan 92, 075002 (2023).
  102. Tingting Wang, Hong Sun, Xiaozhe Li,  and Lifa Zhang, “Chiral phonons: Prediction, verification, and application,” Nano Letters 24, 4311–4318 (2024).
  103. A. Cemal Eringen, Microcontinuum Field Theories (Springer New York, 1999).
  104. A.C. Eringen, Microcontinuum Field Theories: II. Fluent Media, Microcontinuum Field Theories (Springer New York, 2001).
  105. J. Kishine, A. S. Ovchinnikov,  and A. A. Tereshchenko, “Chirality-induced phonon dispersion in a noncentrosymmetric micropolar crystal,” Phys. Rev. Lett. 125, 245302 (2020).
  106. Takumi Funato, Mamoru Matsuo,  and Takeo Kato, “Chirality-induced phonon-spin conversion at an interface,”  (2024), arXiv:2401.17864 [cond-mat.mes-hall] .
  107. Kyosuke Ishito, Huiling Mao, Yusuke Kousaka, Yoshihiko Togawa, Satoshi Iwasaki, Tiantian Zhang, Shuichi Murakami, Jun-ichiro Kishine,  and Takuya Satoh, “Truly chiral phonons in α𝛼\alphaitalic_α-hgs,” Nature Physics 19, 35–39 (2023a).
  108. Kyosuke Ishito, Huiling Mao, Kaya Kobayashi, Yusuke Kousaka, Yoshihiko Togawa, Hiroaki Kusunose, Jun-ichiro Kishine,  and Takuya Satoh, “Chiral phonons: circularly polarized raman spectroscopy and ab initio calculations in a chiral crystal tellurium,” Chirality 35, 338–345 (2023b).
  109. Kyunghoon Kim, Eric Vetter, Liang Yan, Cong Yang, Ziqi Wang, Rui Sun, Yu Yang, Andrew H. Comstock, Xiao Li, Jun Zhou, Lifa Zhang, Wei You, Dali Sun,  and Jun Liu, “Chiral-phonon-activated spin seebeck effect,” Nature Materials 22, 322–328 (2023).
  110. Hiroki Ueda, Mirian García-Fernández, Stefano Agrestini, Carl P. Romao, Jeroen van den Brink, Nicola A. Spaldin, Ke-Jin Zhou,  and Urs Staub, “Chiral phonons in quartz probed by x-rays,” Nature 618, 946–950 (2023).
  111. Eiichi Oishi, Yasuhiro Fujii,  and Akitoshi Koreeda, “Selective observation of enantiomeric chiral phonons in α𝛼\alphaitalic_α-quartz,” Phys. Rev. B 109, 104306 (2024).
  112. Dapeng Yao, Mamoru Matsuo,  and Takehito Yokoyama, “Electric field-induced nonreciprocal spin current due to chiral phonons in chiral-structure superconductors,” Applied Physics Letters 124, 162603 (2024).
  113. M. Pollak, “A percolation treatment of dc hopping conduction,” Journal of Non-Crystalline Solids 11, 1–24 (1972).
  114. Scott Kirkpatrick, “Percolation and conduction,” Rev. Mod. Phys. 45, 574–588 (1973).
  115. C. H. Seager and G. E. Pike, “Percolation and conductivity: A computer study. ii,” Phys. Rev. B 10, 1435–1446 (1974).
  116. Gerald D. Mahan, Many-Particle Physics, 3rd ed. (Springer New York, NY, 2000).
  117. Satoru Hayami, Megumi Yatsushiro, Yuki Yanagi,  and Hiroaki Kusunose, “Classification of atomic-scale multipoles under crystallographic point groups and application to linear response tensors,” Phys. Rev. B 98, 165110 (2018).
  118. Jun-ichiro Kishine, Hiroaki Kusunose,  and Hiroshi M. Yamamoto, “On the definition of chirality and enantioselective fields,” Israel Journal of Chemistry 62, e202200049 (2022).
  119. Sumilan Banerjee and Ehud Altman, “Variable-range hopping through marginally localized phonons,” Phys. Rev. Lett. 116, 116601 (2016).
  120. Allen Miller and Elihu Abrahams, “Impurity conduction at low concentrations,” Phys. Rev. 120, 745–755 (1960).
  121. Vinay Ambegaokar, B. I. Halperin,  and J. S. Langer, “Hopping conductivity in disordered systems,” Phys. Rev. B 4, 2612–2620 (1971).
  122. Patrick A. Lee, “Variable-range hopping in finite one-dimensional wires,” Phys. Rev. Lett. 53, 2042–2045 (1984).
  123. J. Hamrle, T. Kimura, T. Yang,  and Y. Otani, “Three-dimensional distribution of the spin-polarized current inside nanostructures,” Journal of Applied Physics 98, 064301 (2005).
  124. Kerem Yunus Camsari, Samiran Ganguly,  and Supriyo Datta, “Modular approach to spintronics,” Scientific Reports 5, 10571 (2015).
  125. Kerem Y. Camsari, Samiran Ganguly, Deepanjan Datta,  and Supriyo Datta, “Non-equilibrium green’s function based circuit models for coherent spin devices,” IEEE Transactions on Nanotechnology 18, 858–865 (2019).
  126. G. G. Baez Flores, Alexey A. Kovalev, M. van Schilfgaarde,  and K. D. Belashchenko, “Generalized magnetoelectronic circuit theory and spin relaxation at interfaces in magnetic multilayers,” Phys. Rev. B 101, 224405 (2020).
  127. See the Supplemental Materials for detailed derivations of the conductance matrices and the sum rules.
  128. See the Supplemental Materials for the detailed calculations of electron transition rates including the conventional electron-phonon coupling.
  129. See the Supplemental Materials for spatial profiles of the spin accumulation.
  130. See the Supplemental Materials for fitting results for various parameters.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube