Papers
Topics
Authors
Recent
Search
2000 character limit reached

A faster algorithm for the Fréchet distance in 1D for the imbalanced case

Published 29 Apr 2024 in cs.CG | (2404.18738v2)

Abstract: The fine-grained complexity of computing the Fr\'echet distance has been a topic of much recent work, starting with the quadratic SETH-based conditional lower bound by Bringmann from 2014. Subsequent work established largely the same complexity lower bounds for the Fr\'echet distance in 1D. However, the imbalanced case, which was shown by Bringmann to be tight in dimensions $d\geq 2$, was still left open. Filling in this gap, we show that a faster algorithm for the Fr\'echet distance in the imbalanced case is possible: Given two 1-dimensional curves of complexity $n$ and $n{\alpha}$ for some $\alpha \in (0,1)$, we can compute their Fr\'echet distance in $O(n{2\alpha} \log2 n + n \log n)$ time. This rules out a conditional lower bound of the form $O((nm){1-\epsilon})$ that Bringmann showed for $d \geq 2$ and any $\varepsilon>0$ in turn showing a strict separation with the setting $d=1$. At the heart of our approach lies a data structure that stores a 1-dimensional curve $P$ of complexity $n$, and supports queries with a curve $Q$ of complexity~$m$ for the continuous Fr\'echet distance between $P$ and $Q$. The data structure has size in $\mathcal{O}(n\log n)$ and uses query time in $\mathcal{O}(m2 \log2 n)$. Our proof uses a key lemma that is based on the concept of visiting orders and may be of independent interest. We demonstrate this by substantially simplifying the correctness proof of a clustering algorithm by Driemel, Krivo\v{s}ija and Sohler from 2015.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. Presburger Award 2019 - Laudatio for Karl Bringmann and Kasper Green Larsen. https://www.eatcs.org/index.php/component/content/article/1-news/2801-presburger-award-2019-laudatio-for-karl-bringmann-and-kasper-green-larsen.
  2. Pankaj K. Agarwal. Range searching. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, Second Edition, pages 809–837. Chapman and Hall/CRC, 2004. doi:10.1201/9781420035315.CH36.
  3. Computing the discrete Fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429–449, 2014. doi:10.1137/130920526.
  4. Helmut Alt. The computational geometry of comparing shapes. Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 235–248, 2009.
  5. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl., 5:75–91, 1995. doi:10.1142/S0218195995000064.
  6. Discrete Fréchet distance oracles, 2024. doi:10.48550/arXiv.2404.04065.
  7. Fréchet distance for curves, revisited. In Algorithms–ESA 2006: 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006. Proceedings 14, pages 52–63. Springer, 2006.
  8. Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless seth fails. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 661–670. IEEE, 2014.
  9. Tight bounds for approximate near neighbor searching for time series under the Fréchet distance. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 517–550. SIAM, 2022. doi:10.1137/1.9781611977073.25.
  10. Approximability of the discrete Fréchet distance. Journal of Computational Geometry, 7(2):46–76, 2016.
  11. Folding free-space diagrams: computing the Fréchet distance between 1-dimensional curves. In 33rd International Symposium on Computational Geometry (SoCG 2017), pages 641–645. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2017.
  12. Four soviets walk the dog: Improved bounds for computing the Fréchet distance. Discrete Comput. Geom., 58(1):180–216, jul 2017. doi:10.1007/s00454-017-9878-7.
  13. SETH says: Weak Fréchet distance is faster, but only if it is continuous and in one dimension. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2887–2901. SIAM, 2019. doi:10.1137/1.9781611975482.179.
  14. Efficient Fréchet distance queries for segments. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 29:1–29:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ESA.2022.29.
  15. An improved approximation algorithm for the discrete Fréchet distance. Inf. Process. Lett., 138:72–74, 2018. URL: https://doi.org/10.1016/j.ipl.2018.06.011, doi:10.1016/J.IPL.2018.06.011.
  16. Fractional cascading: I. A data structuring technique. Algorithmica, 1(2):133–162, 1986. doi:10.1007/BF01840440.
  17. Solving Fréchet distance problems by algebraic geometric methods. In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 4502–4513. SIAM, 2024. doi:10.1137/1.9781611977912.158.
  18. Data structures for Fréchet queries in trajectory data. In Joachim Gudmundsson and Michiel H. M. Smid, editors, Proceedings of the 29th Canadian Conference on Computational Geometry, CCCG 2017, July 26-28, 2017, Carleton University, Ottawa, Ontario, Canada, pages 214–219, 2017.
  19. Jaywalking your dog: Computing the Fréchet distance with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013. doi:10.1137/120865112.
  20. Approximating the Fréchet distance for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94–127, 2012. URL: https://doi.org/10.1007/s00454-012-9402-z, doi:10.1007/S00454-012-9402-Z.
  21. Clustering time series under the Fréchet distance. CoRR, abs/1512.04349, 2015. URL: http://arxiv.org/abs/1512.04349, arXiv:1512.04349.
  22. Clustering time series under the Fréchet distance. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 766–785. SIAM, 2016. doi:10.1137/1.9781611974331.CH55.
  23. Sublinear data structures for short Fréchet queries. arXiv preprint arXiv:1907.04420, 2019.
  24. On the discrete Fréchet distance in a graph. In Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.SoCG.2022.36, doi:10.4230/LIPICS.SOCG.2022.36.
  25. Static and streaming data structures for Fréchet distance queries. ACM Trans. Algorithms, 19(4):39:1–39:36, 2023. doi:10.1145/3610227.
  26. Generalized selection and ranking: Sorted matrices. SIAM J. Comput., 13(1):14–30, 1984. doi:10.1137/0213002.
  27. On a class of o (n2) problems in computational geometry. Computational geometry, 5(3):165–185, 1995.
  28. Fast Fréchet distance between curves with long edges. Int. J. Comput. Geom. Appl., 29(2):161–187, 2019. doi:10.1142/S0218195919500043.
  29. Approximate discrete Fréchet distance: simplified, extended and structured. CoRR, abs/2212.07124, 2022. URL: https://doi.org/10.48550/arXiv.2212.07124, arXiv:2212.07124, doi:10.48550/ARXIV.2212.07124.
  30. Thijs van der Horst and Tim Ophelders. Faster Fréchet distance approximation through truncated smoothing. CoRR, abs/2401.14815, 2024. URL: https://doi.org/10.48550/arXiv.2401.14815, arXiv:2401.14815, doi:10.48550/ARXIV.2401.14815.
  31. A subquadratic nϵitalic-ϵ{}^{\mbox{{$\epsilon$}}}start_FLOATSUPERSCRIPT italic_ϵ end_FLOATSUPERSCRIPT-approximation for the continuous Fréchet distance. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 1759–1776. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch67, doi:10.1137/1.9781611977554.CH67.
Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.