Conservation Laws For Every Quantum Measurement Outcome (2404.18621v2)
Abstract: In the paradigmatic example of quantum measurements, whenever one measures a system which starts in a superposition of two states of a conserved quantity, it jumps to one of the two states, implying different final values for the quantity that should have been conserved. The standard law of conservation for quantum mechanics handles this jump by stating only that the total distribution of the conserved quantity over repeated measurements is unchanged, but states nothing about individual cases. Here however we show that one can go beyond this and have conservation in each individual instance. We made our arguments in the case of angular momentum of a particle on a circle, where many technicalities simplify, and bring arguments to show that this holds in full generality. Hence we argue that the conservation law in quantum mechanics should be rewritten, to go beyond its hitherto statistical formulation, to state that the total of a conserved quantity is unchanged in every individual measurement outcome. As a further crucial element, we show that conservation can be localised at the level of the system of interest and its relevant frame of reference, and is independent on any assumptions on the distribution of the conserved quantity over the entire universe.
- S. M. Carroll and J. Lodman, Energy non-conservation in quantum mechanics, Found. Phys. 51, 83 (2021).
- Y. Aharonov, S. Popescu, and D. Rohrlich, On conservation laws in quantum mechanics, Proc. Natl. Acad. Sci. USA 118, e1921529118 (2021).
- Y. Aharonov, S. Popescu, and D. Rohrlich, Conservation laws and the foundations of quantum mechanics, Proc. Natl. Acad. Sci. USA 120, e2220810120 (2023).
- T. Maudlin, E. Okon, and D. Sudarsky, On the status of conservation laws in physics: Implications for semiclassical gravity, Stud. Hist. Phil. Sci. B 69, 67 (2020).
- F. Laloe and W. J. Mullin, Angular momentum conservation in measurements on spin Bose-Einstein condensates, Eur. Phys. J. D 68, 47 (2014).
- S. Rogers and A. N. Jordan, Postselection and quantum energetics, Phys. Rev. A 106, 052214 (2022).
- J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1964).
- G. Wick, A. Wightman, and E. Wigner, The intrinsic parity of elementary particles, Phys. Rev. 88, 101 (1952).
- Y. Aharonov and L. Susskind, Charge superselection rule, Phys. Rev. 155, 1428 (1967).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.