Qubit encoding for a mixture of localized functions (2404.18529v3)
Abstract: One of the crucial generic techniques for quantum computation is amplitude encoding. Although several approaches have been proposed, each of them often requires exponential classical-computational cost or an oracle whose explicit construction is not provided. Given the growing demands for practical quantum computation, we develop moderately specialized encoding techniques that generate an arbitrary linear combination of localized complex functions. We demonstrate that $n_{\mathrm{loc}}$ discrete Lorentzian functions as an expansion basis set lead to eficient probabilistic encoding, whose computational time is $\mathcal{O}( \max ( n_{\mathrm{loc}}2 \log n_{\mathrm{loc}},n_{\mathrm{loc}}2 \log n_q, n_q ))$ for $n_q$ data qubits equipped with $\log_2 n_{\mathrm{loc}}$ ancillae. Furthermore, amplitude amplification in combination with amplitude reduction renders it deterministic analytically with controllable errors and the computational time is reduced to $\mathcal{O}( \max ( n_{\mathrm{loc}}{3/2} \log n_{\mathrm{loc}}, n_{\mathrm{loc}}{3/2} \log n_q, n_q )).$ We estimate required resources for applying our scheme to quantum chemistry in real space. We also show the results on real superconducting quantum computers to confirm the validity of our techniques.
- G.-L. Long and Y. Sun, Efficient scheme for initializing a quantum register with an arbitrary superposed state, Phys. Rev. A 64, 014303 (2001).
- V. Shende, S. Bullock, and I. Markov, Synthesis of quantum-logic circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1000 (2006).
- M. Plesch and i. c. v. Brukner, Quantum-state preparation with universal gate decompositions, Phys. Rev. A 83, 032302 (2011).
- L. Grover and T. Rudolph, Creating superpositions that correspond to efficiently integrable probability distributions, arXiv e-prints , quant-ph/0208112 (2002), arXiv:quant-ph/0208112 [quant-ph] .
- A. N. Soklakov and R. Schack, Efficient state preparation for a register of quantum bits, Phys. Rev. A 73, 012307 (2006).
- T. Kosugi and Y.-i. Matsushita, Construction of green’s functions on a quantum computer: Quasiparticle spectra of molecules, Phys. Rev. A 101, 012330 (2020a).
- T. Kosugi and Y.-i. Matsushita, Linear-response functions of molecules on a quantum computer: Charge and spin responses and optical absorption, Phys. Rev. Research 2, 033043 (2020b).
- G. Brassard and P. Hoyer, An exact quantum polynomial-time algorithm for simon’s problem, in Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems (1997) pp. 12–23.
- S. Wiesner, Simulations of Many-Body Quantum Systems by a Quantum Computer, arXiv e-prints , quant-ph/9603028 (1996), arXiv:quant-ph/9603028 [quant-ph] .
- C. Zalka, Simulating quantum systems on a quantum computer, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 313 (1998), https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1998.0162 .
- T. Kosugi, H. Nishi, and Y. ichiro Matsushita, First-quantized eigensolver for ground and excited states of electrons under a uniform magnetic field, Japanese Journal of Applied Physics 62, 062004 (2023a).
- T. Kosugi, H. Nishi, and Y.-i. Matsushita, Exhaustive search for optimal molecular geometries using imaginary-time evolution on a quantum computer, npj Quantum Information 9, 112 (2023b).
- T. Horiba, S. Shirai, and H. Hirai, Construction of Antisymmetric Variational Quantum States with Real-Space Representation, arXiv e-prints , arXiv:2306.08434 (2023), arXiv:2306.08434 [quant-ph] .
- D. S. Abrams and S. Lloyd, Simulation of many-body fermi systems on a universal quantum computer, Phys. Rev. Lett. 79, 2586 (1997).
- N. Gleinig and T. Hoefler, An efficient algorithm for sparse quantum state preparation, in 2021 58th ACM/IEEE Design Automation Conference (DAC) (2021) pp. 433–438.
- F. Mozafari, G. De Micheli, and Y. Yang, Efficient deterministic preparation of quantum states using decision diagrams, Phys. Rev. A 106, 022617 (2022).
- X.-M. Zhang, T. Li, and X. Yuan, Quantum state preparation with optimal circuit depth: Implementations and applications, Phys. Rev. Lett. 129, 230504 (2022).
- C. Zoufal, A. Lucchi, and S. Woerner, Quantum generative adversarial networks for learning and loading random distributions, npj Quantum Information 5, 103 (2019).
- S. Ramos-Calderer, Efficient quantum interpolation of natural data, Phys. Rev. A 106, 062427 (2022).
- 2023 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX) (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2023) https://epubs.siam.org/doi/pdf/10.1137/1.9781611977561 .
- X. Lu and H. Lin, Random-depth Quantum Amplitude Estimation, arXiv e-prints , arXiv:2301.00528 (2023), arXiv:2301.00528 [quant-ph] .
- A. Manzano, D. Musso, and Á. Leitao, Real quantum amplitude estimation, EPJ Quantum Technology 10, 2 (2023).
- T. J. Yoder, G. H. Low, and I. L. Chuang, Fixed-point quantum search with an optimal number of queries, Phys. Rev. Lett. 113, 210501 (2014).
- N. Klco and M. J. Savage, Minimally entangled state preparation of localized wave functions on quantum computers, Phys. Rev. A 102, 012612 (2020).
- A. J. da Silva and D. K. Park, Linear-depth quantum circuits for multiqubit controlled gates, Phys. Rev. A 106, 042602 (2022).
- L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
- C. Gidney, Efficient controlled phase gradients, https://algassert.com/ (2017).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.