Papers
Topics
Authors
Recent
2000 character limit reached

Exploring system size dependence of jet modification in heavy-ion collisions (2404.18115v2)

Published 28 Apr 2024 in nucl-th, hep-ph, and nucl-ex

Abstract: In relativistic heavy-ion collisions, jet quenching in quark-gluon plasma (QGP) has been extensively studied, revealing important insights into the properties of the color deconfined nuclear matter. Over the past decade, there has been a surge of interest in the exploration of QGP droplets in small collision systems like $p$+$p$ or $p$+A collisions driven by the observation of collective flow phenomena. However, the absence of jet quenching, a key QGP signature, in these systems poses a puzzle. Understanding how jet quenching evolves with system size is crucial for uncovering the underlying physics. In this study, we employ the linear Boltzmann transport (LBT) model to investigate jet modification in ${96}$Ru+${96}$Ru, ${96}$Zr+${96}$Zr, and ${197}$Au+${197}$Au collisions at $\sqrt{s_{NN}}=200$ GeV. Our findings highlight the system size sensitivity exhibited by jet nuclear modification factor ($R_\mathrm{AA}$) and jet shape ($\rho$), contrasting to the relatively weak responses of jet mass ($M$), girth ($g$) and momentum dispersion ($p_\mathrm{T}{D}$) to system size variations. These results offer invaluable insights into the system size dependence of the QGP properties and await experimental validation at the Relativistic Heavy-Ion Collider.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. M. Gyulassy and L. McLerran, Nucl.Phys. A750, 30 (2005), arXiv:nucl-th/0405013.
  2. P. Jacobs and X.-N. Wang, Prog. Part. Nucl. Phys. 54, 443 (2005), arXiv:hep-ph/0405125.
  3. Ann. Rev. Nucl. Part. Sci. 68, 339 (2018), arXiv:1802.04801.
  4. J. W. Harris and B. Müller, Eur. Phys. J. C 84, 247 (2024).
  5. J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
  6. Nature Phys. 15, 1113 (2019).
  7. X.-N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).
  8. Int. J. Mod. Phys. E24, 1530014 (2015), arXiv:1511.00790.
  9. A. Majumder and M. Van Leeuwen, Prog. Part. Nucl. Phys. 66, 41 (2011), arXiv:1002.2206.
  10. JET, K. M. Burke et al., Phys. Rev. C 90, 014909 (2014), arXiv:1312.5003.
  11. JETSCAPE, S. Cao et al., Phys. Rev. C 104, 024905 (2021), arXiv:2102.11337.
  12. CMS, V. Khachatryan et al., JHEP 09, 091 (2010), arXiv:1009.4122.
  13. ATLAS, G. Aad et al., Phys. Rev. Lett. 110, 182302 (2013), arXiv:1212.5198.
  14. ALICE, B. Abelev et al., Phys. Lett. B 719, 29 (2013), arXiv:1212.2001.
  15. PHENIX, A. Adare et al., Phys. Rev. Lett. 111, 212301 (2013), arXiv:1303.1794.
  16. STAR, L. Adamczyk et al., Phys. Lett. B 747, 265 (2015), arXiv:1502.07652.
  17. STAR, M. I. Abdulhamid et al., Phys. Rev. Lett. 130, 242301 (2023), arXiv:2210.11352.
  18. (2024), arXiv:2401.09208.
  19. ATLAS, G. Aad et al., Phys. Rev. Lett. 131, 072301 (2023), arXiv:2206.01138.
  20. PHENIX, A. Adare et al., Phys. Rev. Lett. 116, 122301 (2016), arXiv:1509.04657.
  21. ALICE, S. Acharya et al., Phys. Lett. B 783, 95 (2018), arXiv:1712.05603.
  22. L. Yi, Nucl. Phys. A 982, 85 (2019).
  23. A. Huss et al., Phys. Rev. Lett. 126, 192301 (2021), arXiv:2007.13754.
  24. A. Huss et al., Phys. Rev. C 103, 054903 (2021), arXiv:2007.13758.
  25. Phys. Rev. C 102, 041901 (2020), arXiv:1907.03308.
  26. Y.-F. Liu et al., Phys. Rev. C 105, 044904 (2022), arXiv:2107.01522.
  27. Eur. Phys. J. C 81, 1035 (2021), arXiv:2108.06648.
  28. STAR, Y. He, PoS HardProbes2023, 174 (2024).
  29. J.-P. Blaizot and Y. Mehtar-Tani, Int. J. Mod. Phys. E 24, 1530012 (2015), arXiv:1503.05958.
  30. R. Kogler et al., Rev. Mod. Phys. 91, 045003 (2019), arXiv:1803.06991.
  31. H. A. Andrews et al., J. Phys. G 47, 065102 (2020), arXiv:1808.03689.
  32. Rev. Mod. Phys. 90, 025005 (2018), arXiv:1705.01974.
  33. S. Cao and X.-N. Wang, Rept. Prog. Phys. 84, 024301 (2021), arXiv:2002.04028.
  34. S. Cao and G.-Y. Qin, Ann. Rev. Nucl. Part. Sci. 73, 205 (2023), arXiv:2211.16821.
  35. (2024), arXiv:2401.10026.
  36. X.-N. Wang, Nucl. Phys. A750, 98 (2005), arXiv:nucl-th/0405017.
  37. PHENIX, K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002), arXiv:nucl-ex/0109003.
  38. STAR, L. Adamczyk et al., Phys. Rev. Lett. 121, 032301 (2018), arXiv:1707.01988.
  39. A. Majumder and J. Putschke, Phys. Rev. C93, 054909 (2016), arXiv:1408.3403.
  40. ALICE, S. Acharya et al., Phys. Lett. B 776, 249 (2018), arXiv:1702.00804.
  41. Nucl. Phys. A982, 643 (2019), arXiv:1807.06550.
  42. JHEP 01, 044 (2020), arXiv:1907.11248.
  43. CMS, S. Chatrchyan et al., Phys. Lett. B 730, 243 (2014), arXiv:1310.0878.
  44. ALICE, L. Cunqueiro, Nucl. Phys. A 956, 593 (2016), arXiv:1512.07882.
  45. ATLAS, G. Aad et al., Phys. Lett. B 739, 320 (2014), arXiv:1406.2979.
  46. CMS, S. Chatrchyan et al., JHEP 10, 087 (2012), arXiv:1205.5872.
  47. Chin. Phys. C 45, 024102 (2021), arXiv:2005.01093.
  48. Phys. Rev. C95, 044909 (2017), arXiv:1701.07951.
  49. JETSCAPE, Y. Tachibana et al., (2023), arXiv:2301.02485.
  50. S.-Y. Tang et al., (2023), arXiv:2302.13528.
  51. ALICE, S. Acharya et al., JHEP 10, 139 (2018), arXiv:1807.06854.
  52. Chin. Phys. C 46, 104102 (2022), arXiv:2204.01211.
  53. T. Sjöstrand et al., Comput. Phys. Commun. 191, 159 (2015), arXiv:1410.3012.
  54. JHEP 0605, 026 (2006), arXiv:hep-ph/0603175.
  55. Chin. Phys. C 47, 024106 (2023), arXiv:2208.13331.
  56. Phys. Rev. C 97, 064918 (2018), arXiv:1802.04449.
  57. Phys. Rev. C 98, 024913 (2018), arXiv:1805.03762.
  58. Phys. Rev. C 105, 034909 (2022), arXiv:2107.04949.
  59. Phys. Rev. C 109, 034919 (2024), arXiv:2306.13742.
  60. Phys. Rev. C 94, 014909 (2016), arXiv:1605.06447.
  61. Nucl. Phys. A696, 788 (2001), arXiv:hep-ph/0102230.
  62. Phys. Rev. Lett. 93, 072301 (2004), arXiv:nucl-th/0309040.
  63. A. Majumder, Phys. Rev. D85, 014023 (2012), arXiv:0912.2987.
  64. S. Cao and A. Majumder, Phys. Rev. C 101, 024903 (2020), arXiv:1712.10055.
  65. JETSCAPE, S. Cao et al., Phys. Rev. C 96, 024909 (2017), arXiv:1705.00050.
  66. Y. He et al., Phys. Rev. C99, 054911 (2019), arXiv:1809.02525.
  67. Y. He et al., Phys. Rev. C 106, 044904 (2022), arXiv:2201.08408.
  68. Phys. Lett. B782, 707 (2018), arXiv:1803.06785.
  69. M. Cacciari and G. P. Salam, Phys. Lett. B 641, 57 (2006), arXiv:hep-ph/0512210.
  70. Eur. Phys. J. C72, 1896 (2012), arXiv:1111.6097.
  71. STAR, L. Adamczyk et al., Phys. Rev. C 96, 024905 (2017), arXiv:1702.01108.
  72. STAR, J. Adam et al., Phys. Rev. C 102, 054913 (2020), arXiv:2006.00582.
  73. JETSCAPE, A. Kumar et al., Phys. Rev. C 107, 034911 (2023), arXiv:2204.01163.
  74. STAR, S. Oh, Nucl. Phys. A 1005, 121808 (2021), arXiv:2002.06217.
  75. Phys. Lett. B801, 135181 (2020), arXiv:1906.09562.
  76. JETSCAPE, Y. Tachibana et al., PoS HardProbes2018, 099 (2018), arXiv:1812.06366.
  77. T. Luo, PoS HardProbes2018, 036 (2019).
  78. Thomas Gosart, A jet shape study with the star experiment, https://absuploads.aps.org/presentation.cfm?pid=17749, 2020.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: