Papers
Topics
Authors
Recent
2000 character limit reached

Small-angle neutron scattering signatures of magnetic hopfions (2404.17998v1)

Published 27 Apr 2024 in cond-mat.mes-hall

Abstract: Magnetic hopfions are three-dimensional localized magnetic topological solitons which can exist in the bulk of magnetic materials. Based on a Ritz model for magnetic hopfions in a chiral magnet, the unpolarized magnetic small-angle neutron scattering (SANS) cross section, the spin-flip scattering cross section, and the chiral function (characterizing the imbalance between the two spin-flip scattering amplitudes) are computed here analytically; while the real-space correlation function is obtained numerically. Features of these functions, specific to magnetic hopfions, are discussed. Our results enable the SANS method to be used for the detection of magnetic hopfions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. L. D. Faddeev, Some comments on the many-dimensional solitons, Lett. Math. Phys. 1, 289–293 (1976).
  2. A. B. Borisov and V. Kiselev, Solitons and Localized Structures in Magnets (UB Press of RAS, Ekaterinburg, 2009/2011).
  3. Y. Liu, R. K. Lake, and J. Zang, Binding a hopfion in a chiral magnet nanodisk, Phys. Rev. B 98, 174437 (2018).
  4. P. Sutcliffe, Hopfions in chiral magnets, J. Phys. A: Math. Theor. 51, 375401 (2018).
  5. A. Michels, Magnetic Small-Angle Neutron Scattering: A Probe for Mesoscale Magnetism Analysis (Oxford University Press, Oxford, 2021).
  6. K. L. Metlov, Two types of metastable hopfions in bulk magnets, Physica D 443, 133561 (2023).
  7. J. H. C. Whitehead, An Expression of Hopf’s Invariant as an Integral, Proc. Natl. Acad. Sci. U.S.A. 33, 117–123 (1947).
  8. K. L. Metlov, Magnetostatic bounds on stability of hopfions in bulk helimagnets (2024a), arXiv:2404.07964 [cond-mat.mes-hall] .
  9. K. L. Metlov, Source code, https://github.com/metlov/magnhopf (2024b).
  10. S. V. Maleev, Polarized neutron scattering in magnets, Physics–Uspekhi 45, 569–596 (2002).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 4 likes about this paper.