Papers
Topics
Authors
Recent
Search
2000 character limit reached

Analytical derivation and extension of the anti-Kibble-Zurek scaling in the transverse field Ising model

Published 26 Apr 2024 in quant-ph, cond-mat.quant-gas, and cond-mat.stat-mech | (2404.17247v3)

Abstract: A defect density which quantifies the deviation from the spin ground state characterizes non-equilibrium dynamics during phase transitions. The widely recognized Kibble-Zurek scaling predicts how the defect density evolves during phase transitions. However, it can be perturbed by a noise, leading to the anti-Kibble-Zurek scaling. In this research, we analytically investigate the effect of Gaussian white noise on the transition probabilities of the Landau-Zener model. We apply this analysis to the one-dimensional transverse field Ising model and obtain an analytical approximate solution of the defect density. Our analysis reveals that when the introduced noise is small, the model follows the previously known anti-Kibble-Zurek scaling. Conversely, when the noise increases, the scaling can be obtained by using the adiabatic approximation. This result indicates that deriving the anti-Kibble-Zurek scaling does not require solving differential equations, instead, it can be achieved simply by applying the adiabatic approximation. Furthermore, we identify the parameter that minimizes the defect density based on the new scaling, which allows us to verify how effective the already known scaling of the optimized parameter is.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. B. Damski, Phys. Rev. lett. 95, 035701 (2005).
  2. J. Dziarmaga, Phys. Rev. lett. 95, 245701 (2005).
  3. A. Polkovnikov, Phys. Rev. B 72, 161201 (2005).
  4. T. W. Kibble, J. Phys. A: Math. Gen. 9, 1387 (1976).
  5. T. W. Kibble, Phys. Rep. 67, 183 (1980).
  6. W. H. Zurek, Nature 317, 505 (1985).
  7. W. H. Zurek, Acta Phys. Pol. B 24, 1301 (1993).
  8. W. H. Zurek, Phys. Rep. 276, 177 (1996).
  9. M. Singh and S. Gangadharaiah, Phys. Rev. B 104, 064313 (2021).
  10. A. Rahmani, Phys. Rev. A 92, 042110 (2015).
  11. Y. Kayanuma, J. Phys. Soc. Jpn. 53, 108 (1984).
  12. B. Gulácsi and B. Dóra, Phys. Rev. B 103, 205153 (2021).
  13. V. Mukherjee and A. Dutta, J. Stat. Mech. Theory Exp. 2009, P05005 (2009).
  14. Y. Kayanuma and Y. Mizumoto, Phys. Rev. A 62, 061401 (2000).
  15. T. Suzuki and K. Iwamura, Phys. Rev. B 108, 014110 (2023).
  16. D. Rossini and E. Vicari, Phys. Rev. B 100, 174303 (2019).
  17. D. Rossini and E. Vicari, Phys. Rev. Res. 2, 023211 (2020).
  18. E. A. Novikov, Sov. Phys. JETP 20, 1290 (1965).
  19. M. Sarandy and D. Lidar, Phys. Rev. A 71, 012331 (2005).
  20. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
  21. V. Weisskopf, Mat. Fys. Medd. 14, 6 (1936).
  22. J. Schwinger, Phys. Rev. 82, 664 (1951).
  23. R. Nasri, Integral Transforms Spec. Funct. 27, 181 (2016).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.