Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Partial absence of cosine problem in 3d Lorentzian spin foams (2404.16943v1)

Published 25 Apr 2024 in gr-qc and hep-th

Abstract: We study the semi-classical limit of the recently proposed coherent spin foam model for (2+1) Lorentzian quantum gravity. Specifically, we analyze the gluing equations derived from the stationary phase approximation of the vertex amplitude. Typically these exhibit two solutions yielding a cosine of the Regge action. However, by inspection of the algebraic equations as well as their geometrical realization, we show in this note that the behavior is more nuanced: when all triangles are either spacelike or timelike, two solutions exist. In any other case, only a single solution is obtained, thus yielding a single Regge exponential.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. L. Freidel and K. Krasnov, Class. Quant. Grav. 25, 125018 (2008), arXiv:0708.1595 .
  2. E. R. Livine and S. Speziale, Phys. Rev. D 76, 084028 (2007), 0705.0674 .
  3. F. Conrady and J. Hnybida, Class. Quant. Grav. 27, 185011 (2010), arXiv:1002.1959 [gr-qc] .
  4. F. Conrady, Class. Quant. Grav. 27, 155014 (2010), arXiv:1003.5652 [gr-qc] .
  5. J. D. Simão and S. Steinhaus, Phys. Rev. D 104, 126001 (2021), arXiv:2106.15635 [gr-qc] .
  6. H. Liu and M. Han, Phys. Rev. D 99, 084040 (2019), arXiv:1810.09042 [gr-qc] .
  7. J. D. Simão,   (2024a), arXiv:2402.05993 [gr-qc] .
  8. J. D. Simão,   (2024b), arXiv:2401.10324 .
  9. V. Bargmann, Annals Math. 48, 568 (1947).
  10. W. Rühl, The Lorentz Group and Harmonic Analysis, Mathematical physics monograph series (W. A. Benjamin, 1970).
  11. A. M. Perelomov, Generalized coherent states and their applications (1986).
  12. F. Conrady and L. Freidel, Phys. Rev. D78, 104023 (2008), arXiv:0809.2280 [gr-qc] .
  13. L. Hörmander, “The fourier transformation,” in The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003) pp. 158–250.
  14. R. D. Sorkin,   (2019), arXiv:1908.10022 [gr-qc] .
  15. E. R. Livine and D. Oriti, Nucl. Phys. B 663, 231 (2003), arXiv:gr-qc/0210064 .
  16. E. Bianchi and P. Martin-Dussaud,   (2021), arXiv:2109.00986 .
  17. J. Engle and A. Zipfel, Phys. Rev. D 94, 064024 (2016), arXiv:1502.04640 [gr-qc] .

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.