Papers
Topics
Authors
Recent
2000 character limit reached

Superdiffusive transport on lattices with nodal impurities (2404.16927v2)

Published 25 Apr 2024 in cond-mat.mes-hall and quant-ph

Abstract: We show that 1D lattice models exhibit superdiffusive transport in the presence of random "nodal impurities" in the absence of interaction. Here a nodal impurity is defined as a localized state, the wave function of which has zeros (nodes) in momentum space. The dynamics exponent $z$, a defining quantity for transport behaviors, is computed to establish this result. To be specific, in a disordered system having only nodal impurities, the dynamical exponent $z=4n/(4n-1)$ where $n$ is the order of the node. If the system has time reversal, the nodes appear in pairs and the dynamical exponent can be enhanced to $z=8n/(8n-1)$. As $1<z<2$, both cases indicate superdiffusive transport.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen, R. Steinigeweg,  and M. Žnidarič, “Finite-temperature transport in one-dimensional quantum lattice models,” Rev. Mod. Phys. 93, 025003 (2021).
  2. Jesko Sirker, “Transport in one-dimensional integrable quantum systems,” SciPost Phys. Lect. Notes , 17 (2020).
  3. Marko Medenjak, Katja Klobas,  and Toma ž Prosen, “Diffusion in deterministic interacting lattice systems,” Phys. Rev. Lett. 119, 110603 (2017).
  4. Abhishek Dhar, “Heat transport in low-dimensional systems,” Advances in Physics 57, 457–537 (2008), https://doi.org/10.1080/00018730802538522 .
  5. P. Cipriani, S. Denisov,  and A. Politi, “From anomalous energy diffusion to levy walks and heat conductivity in one-dimensional systems,” Phys. Rev. Lett. 94, 244301 (2005).
  6. Shunda Chen, Jiao Wang, Giulio Casati,  and Giuliano Benenti, “Nonintegrability and the fourier heat conduction law,” Phys. Rev. E 90, 032134 (2014).
  7. Adam Nahum, Jonathan Ruhman, Sagar Vijay,  and Jeongwan Haah, “Quantum entanglement growth under random unitary dynamics,” Phys. Rev. X 7, 031016 (2017).
  8. Adam Nahum, Sagar Vijay,  and Jeongwan Haah, “Operator spreading in random unitary circuits,” Phys. Rev. X 8, 021014 (2018).
  9. Tibor Rakovszky, Frank Pollmann,  and C. W. von Keyserlingk, “Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation,” Phys. Rev. X 8, 031058 (2018).
  10. Vedika Khemani, Ashvin Vishwanath,  and David A. Huse, “Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws,” Phys. Rev. X 8, 031057 (2018).
  11. C. W. von Keyserlingk, Tibor Rakovszky, Frank Pollmann,  and S. L. Sondhi, “Operator hydrodynamics, otocs, and entanglement growth in systems without conservation laws,” Phys. Rev. X 8, 021013 (2018).
  12. Tianci Zhou, Shenglong Xu, Xiao Chen, Andrew Guo,  and Brian Swingle, “Operator lévy flight: Light cones in chaotic long-range interacting systems,” Phys. Rev. Lett. 124, 180601 (2020a).
  13. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
  14. D J Thouless, “A relation between the density of states and range of localization for one dimensional random systems,” Journal of Physics C: Solid State Physics 5, 77 (1972).
  15. Tōru Hirota and Kazushige Ishii, “Exactly soluble models of one-dimensional disordered systems,” Progress of Theoretical Physics 45, 1713–1715 (1971).
  16. Vir B Bulchandani, Sarang Gopalakrishnan,  and Enej Ilievski, “Superdiffusion in spin chains,” Journal of Statistical Mechanics: Theory and Experiment 2021, 084001 (2021).
  17. David H. Dunlap, H-L. Wu,  and Philip W. Phillips, “Absence of localization in a random-dimer model,” Phys. Rev. Lett. 65, 88–91 (1990).
  18. Stellan Ostlund, Rahul Pandit, David Rand, Hans Joachim Schellnhuber,  and Eric D. Siggia, “One-dimensional schrödinger equation with an almost periodic potential,” Phys. Rev. Lett. 50, 1873–1876 (1983).
  19. Mahito Kohmoto, Leo P. Kadanoff,  and Chao Tang, “Localization problem in one dimension: Mapping and escape,” Phys. Rev. Lett. 50, 1870–1872 (1983).
  20. Hisashi Hiramoto and Shuji Abe, “Dynamics of an electron in quasiperiodic systems. i. fibonacci model,” Journal of the Physical Society of Japan 57, 230–240 (1988).
  21. Marko Žnidarič, “Spin transport in a one-dimensional anisotropic heisenberg model,” Phys. Rev. Lett. 106, 220601 (2011).
  22. Marko Ljubotina, Marko Žnidarič,  and Tomaž Prosen, “Spin diffusion from an inhomogeneous quench in an integrable system,” Nature Communications 8, 16117 (2017).
  23. Marko Ljubotina, Marko Žnidarič,  and Toma ž Prosen, “Kardar-parisi-zhang physics in the quantum heisenberg magnet,” Phys. Rev. Lett. 122, 210602 (2019).
  24. Olalla A. Castro-Alvaredo, Benjamin Doyon,  and Takato Yoshimura, “Emergent hydrodynamics in integrable quantum systems out of equilibrium,” Phys. Rev. X 6, 041065 (2016).
  25. Bruno Bertini, Mario Collura, Jacopo De Nardis,  and Maurizio Fagotti, “Transport in out-of-equilibrium x⁢x⁢z𝑥𝑥𝑧xxzitalic_x italic_x italic_z chains: Exact profiles of charges and currents,” Phys. Rev. Lett. 117, 207201 (2016).
  26. Sarang Gopalakrishnan and Romain Vasseur, “Kinetic theory of spin diffusion and superdiffusion in x⁢x⁢z𝑥𝑥𝑧xxzitalic_x italic_x italic_z spin chains,” Phys. Rev. Lett. 122, 127202 (2019).
  27. Pieter W. Claeys, Austen Lamacraft,  and Jonah Herzog-Arbeitman, “Absence of superdiffusion in certain random spin models,” Phys. Rev. Lett. 128, 246603 (2022).
  28. Jacopo De Nardis, Sarang Gopalakrishnan, Romain Vasseur,  and Brayden Ware, “Stability of superdiffusion in nearly integrable spin chains,” Phys. Rev. Lett. 127, 057201 (2021).
  29. Aaron J. Friedman, Sarang Gopalakrishnan,  and Romain Vasseur, “Diffusive hydrodynamics from integrability breaking,” Phys. Rev. B 101, 180302 (2020).
  30. Enej Ilievski, Jacopo De Nardis, Sarang Gopalakrishnan, Romain Vasseur,  and Brayden Ware, “Superuniversality of superdiffusion,” Phys. Rev. X 11, 031023 (2021).
  31. Bingtian Ye, Francisco Machado, Jack Kemp, Ross B. Hutson,  and Norman Y. Yao, “Universal kardar-parisi-zhang dynamics in integrable quantum systems,” Phys. Rev. Lett. 129, 230602 (2022).
  32. Alexander D. Mirlin, Yan V. Fyodorov, Frank-Michael Dittes, Javier Quezada,  and Thomas H. Seligman, “Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices,” Phys. Rev. E 54, 3221–3230 (1996).
  33. Lisa Borland and JG Menchero, “Nonextensive effects in tight-binding systems with long-range hopping,” Brazilian journal of physics 29, 169–178 (1999).
  34. Vipin Kerala Varma, Clélia de Mulatier,  and Marko Žnidarič, “Fractality in nonequilibrium steady states of quasiperiodic systems,” Phys. Rev. E 96, 032130 (2017a).
  35. Madhumita Saha, Santanu K. Maiti,  and Archak Purkayastha, “Anomalous transport through algebraically localized states in one dimension,” Phys. Rev. B 100, 174201 (2019).
  36. Jonas Richter, Oliver Lunt,  and Arijeet Pal, “Transport and entanglement growth in long-range random clifford circuits,” Phys. Rev. Res. 5, L012031 (2023).
  37. Tianci Zhou, Shenglong Xu, Xiao Chen, Andrew Guo,  and Brian Swingle, “Operator lévy flight: Light cones in chaotic long-range interacting systems,” Phys. Rev. Lett. 124, 180601 (2020b).
  38. Yu-Peng Wang, Chen Fang,  and Jie Ren, “Superdiffusive transport in quasi-particle dephasing models,” arXiv preprint arXiv:2310.03069  (2023).
  39. Massimiliano Esposito and Pierre Gaspard, “Exactly solvable model of quantum diffusion,” Journal of statistical physics 121, 463–496 (2005).
  40. Marko Žnidarič, “Exact solution for a diffusive nonequilibrium steady state of an open quantum chain,” Journal of Statistical Mechanics: Theory and Experiment 2010, L05002 (2010).
  41. Xiangyu Cao, Antoine Tilloy,  and Andrea De Luca, “Entanglement in a fermion chain under continuous monitoring,” SciPost Phys. 7, 024 (2019).
  42. J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge University Press, 2020).
  43. Tony Jin, Michele Filippone,  and Thierry Giamarchi, “Generic transport formula for a system driven by markovian reservoirs,” Phys. Rev. B 102, 205131 (2020).
  44. Marko Žnidarič, Antonello Scardicchio,  and Vipin Kerala Varma, “Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system,” Phys. Rev. Lett. 117, 040601 (2016).
  45. Gabriel T. Landi, Dario Poletti,  and Gernot Schaller, “Nonequilibrium boundary-driven quantum systems: Models, methods, and properties,” Rev. Mod. Phys. 94, 045006 (2022).
  46. Cord A Müller and Dominique Delande, “Disorder and interference: localization phenomena,” arXiv preprint arXiv:1005.0915  (2010).
  47. Marko Žnidarič, “Weak integrability breaking: Chaos with integrability signature in coherent diffusion,” Phys. Rev. Lett. 125, 180605 (2020).
  48. Vipin Kerala Varma, Clélia de Mulatier,  and Marko Žnidarič, “Fractality in nonequilibrium steady states of quasiperiodic systems,” Phys. Rev. E 96, 032130 (2017b).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.