Superdiffusive transport on lattices with nodal impurities (2404.16927v2)
Abstract: We show that 1D lattice models exhibit superdiffusive transport in the presence of random "nodal impurities" in the absence of interaction. Here a nodal impurity is defined as a localized state, the wave function of which has zeros (nodes) in momentum space. The dynamics exponent $z$, a defining quantity for transport behaviors, is computed to establish this result. To be specific, in a disordered system having only nodal impurities, the dynamical exponent $z=4n/(4n-1)$ where $n$ is the order of the node. If the system has time reversal, the nodes appear in pairs and the dynamical exponent can be enhanced to $z=8n/(8n-1)$. As $1<z<2$, both cases indicate superdiffusive transport.
- B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen, R. Steinigeweg, and M. Žnidarič, “Finite-temperature transport in one-dimensional quantum lattice models,” Rev. Mod. Phys. 93, 025003 (2021).
- Jesko Sirker, “Transport in one-dimensional integrable quantum systems,” SciPost Phys. Lect. Notes , 17 (2020).
- Marko Medenjak, Katja Klobas, and Toma ž Prosen, “Diffusion in deterministic interacting lattice systems,” Phys. Rev. Lett. 119, 110603 (2017).
- Abhishek Dhar, “Heat transport in low-dimensional systems,” Advances in Physics 57, 457–537 (2008), https://doi.org/10.1080/00018730802538522 .
- P. Cipriani, S. Denisov, and A. Politi, “From anomalous energy diffusion to levy walks and heat conductivity in one-dimensional systems,” Phys. Rev. Lett. 94, 244301 (2005).
- Shunda Chen, Jiao Wang, Giulio Casati, and Giuliano Benenti, “Nonintegrability and the fourier heat conduction law,” Phys. Rev. E 90, 032134 (2014).
- Adam Nahum, Jonathan Ruhman, Sagar Vijay, and Jeongwan Haah, “Quantum entanglement growth under random unitary dynamics,” Phys. Rev. X 7, 031016 (2017).
- Adam Nahum, Sagar Vijay, and Jeongwan Haah, “Operator spreading in random unitary circuits,” Phys. Rev. X 8, 021014 (2018).
- Tibor Rakovszky, Frank Pollmann, and C. W. von Keyserlingk, “Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation,” Phys. Rev. X 8, 031058 (2018).
- Vedika Khemani, Ashvin Vishwanath, and David A. Huse, “Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws,” Phys. Rev. X 8, 031057 (2018).
- C. W. von Keyserlingk, Tibor Rakovszky, Frank Pollmann, and S. L. Sondhi, “Operator hydrodynamics, otocs, and entanglement growth in systems without conservation laws,” Phys. Rev. X 8, 021013 (2018).
- Tianci Zhou, Shenglong Xu, Xiao Chen, Andrew Guo, and Brian Swingle, “Operator lévy flight: Light cones in chaotic long-range interacting systems,” Phys. Rev. Lett. 124, 180601 (2020a).
- P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958).
- D J Thouless, “A relation between the density of states and range of localization for one dimensional random systems,” Journal of Physics C: Solid State Physics 5, 77 (1972).
- Tōru Hirota and Kazushige Ishii, “Exactly soluble models of one-dimensional disordered systems,” Progress of Theoretical Physics 45, 1713–1715 (1971).
- Vir B Bulchandani, Sarang Gopalakrishnan, and Enej Ilievski, “Superdiffusion in spin chains,” Journal of Statistical Mechanics: Theory and Experiment 2021, 084001 (2021).
- David H. Dunlap, H-L. Wu, and Philip W. Phillips, “Absence of localization in a random-dimer model,” Phys. Rev. Lett. 65, 88–91 (1990).
- Stellan Ostlund, Rahul Pandit, David Rand, Hans Joachim Schellnhuber, and Eric D. Siggia, “One-dimensional schrödinger equation with an almost periodic potential,” Phys. Rev. Lett. 50, 1873–1876 (1983).
- Mahito Kohmoto, Leo P. Kadanoff, and Chao Tang, “Localization problem in one dimension: Mapping and escape,” Phys. Rev. Lett. 50, 1870–1872 (1983).
- Hisashi Hiramoto and Shuji Abe, “Dynamics of an electron in quasiperiodic systems. i. fibonacci model,” Journal of the Physical Society of Japan 57, 230–240 (1988).
- Marko Žnidarič, “Spin transport in a one-dimensional anisotropic heisenberg model,” Phys. Rev. Lett. 106, 220601 (2011).
- Marko Ljubotina, Marko Žnidarič, and Tomaž Prosen, “Spin diffusion from an inhomogeneous quench in an integrable system,” Nature Communications 8, 16117 (2017).
- Marko Ljubotina, Marko Žnidarič, and Toma ž Prosen, “Kardar-parisi-zhang physics in the quantum heisenberg magnet,” Phys. Rev. Lett. 122, 210602 (2019).
- Olalla A. Castro-Alvaredo, Benjamin Doyon, and Takato Yoshimura, “Emergent hydrodynamics in integrable quantum systems out of equilibrium,” Phys. Rev. X 6, 041065 (2016).
- Bruno Bertini, Mario Collura, Jacopo De Nardis, and Maurizio Fagotti, “Transport in out-of-equilibrium xxz𝑥𝑥𝑧xxzitalic_x italic_x italic_z chains: Exact profiles of charges and currents,” Phys. Rev. Lett. 117, 207201 (2016).
- Sarang Gopalakrishnan and Romain Vasseur, “Kinetic theory of spin diffusion and superdiffusion in xxz𝑥𝑥𝑧xxzitalic_x italic_x italic_z spin chains,” Phys. Rev. Lett. 122, 127202 (2019).
- Pieter W. Claeys, Austen Lamacraft, and Jonah Herzog-Arbeitman, “Absence of superdiffusion in certain random spin models,” Phys. Rev. Lett. 128, 246603 (2022).
- Jacopo De Nardis, Sarang Gopalakrishnan, Romain Vasseur, and Brayden Ware, “Stability of superdiffusion in nearly integrable spin chains,” Phys. Rev. Lett. 127, 057201 (2021).
- Aaron J. Friedman, Sarang Gopalakrishnan, and Romain Vasseur, “Diffusive hydrodynamics from integrability breaking,” Phys. Rev. B 101, 180302 (2020).
- Enej Ilievski, Jacopo De Nardis, Sarang Gopalakrishnan, Romain Vasseur, and Brayden Ware, “Superuniversality of superdiffusion,” Phys. Rev. X 11, 031023 (2021).
- Bingtian Ye, Francisco Machado, Jack Kemp, Ross B. Hutson, and Norman Y. Yao, “Universal kardar-parisi-zhang dynamics in integrable quantum systems,” Phys. Rev. Lett. 129, 230602 (2022).
- Alexander D. Mirlin, Yan V. Fyodorov, Frank-Michael Dittes, Javier Quezada, and Thomas H. Seligman, “Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices,” Phys. Rev. E 54, 3221–3230 (1996).
- Lisa Borland and JG Menchero, “Nonextensive effects in tight-binding systems with long-range hopping,” Brazilian journal of physics 29, 169–178 (1999).
- Vipin Kerala Varma, Clélia de Mulatier, and Marko Žnidarič, “Fractality in nonequilibrium steady states of quasiperiodic systems,” Phys. Rev. E 96, 032130 (2017a).
- Madhumita Saha, Santanu K. Maiti, and Archak Purkayastha, “Anomalous transport through algebraically localized states in one dimension,” Phys. Rev. B 100, 174201 (2019).
- Jonas Richter, Oliver Lunt, and Arijeet Pal, “Transport and entanglement growth in long-range random clifford circuits,” Phys. Rev. Res. 5, L012031 (2023).
- Tianci Zhou, Shenglong Xu, Xiao Chen, Andrew Guo, and Brian Swingle, “Operator lévy flight: Light cones in chaotic long-range interacting systems,” Phys. Rev. Lett. 124, 180601 (2020b).
- Yu-Peng Wang, Chen Fang, and Jie Ren, “Superdiffusive transport in quasi-particle dephasing models,” arXiv preprint arXiv:2310.03069 (2023).
- Massimiliano Esposito and Pierre Gaspard, “Exactly solvable model of quantum diffusion,” Journal of statistical physics 121, 463–496 (2005).
- Marko Žnidarič, “Exact solution for a diffusive nonequilibrium steady state of an open quantum chain,” Journal of Statistical Mechanics: Theory and Experiment 2010, L05002 (2010).
- Xiangyu Cao, Antoine Tilloy, and Andrea De Luca, “Entanglement in a fermion chain under continuous monitoring,” SciPost Phys. 7, 024 (2019).
- J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge University Press, 2020).
- Tony Jin, Michele Filippone, and Thierry Giamarchi, “Generic transport formula for a system driven by markovian reservoirs,” Phys. Rev. B 102, 205131 (2020).
- Marko Žnidarič, Antonello Scardicchio, and Vipin Kerala Varma, “Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system,” Phys. Rev. Lett. 117, 040601 (2016).
- Gabriel T. Landi, Dario Poletti, and Gernot Schaller, “Nonequilibrium boundary-driven quantum systems: Models, methods, and properties,” Rev. Mod. Phys. 94, 045006 (2022).
- Cord A Müller and Dominique Delande, “Disorder and interference: localization phenomena,” arXiv preprint arXiv:1005.0915 (2010).
- Marko Žnidarič, “Weak integrability breaking: Chaos with integrability signature in coherent diffusion,” Phys. Rev. Lett. 125, 180605 (2020).
- Vipin Kerala Varma, Clélia de Mulatier, and Marko Žnidarič, “Fractality in nonequilibrium steady states of quasiperiodic systems,” Phys. Rev. E 96, 032130 (2017b).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.