Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Compact almost automorphic dynamics of non-autonomous differential equations with exponential dichotomy and applications to biological models with delay (2404.16758v1)

Published 25 Apr 2024 in math.DS

Abstract: In the present work, we prove that, if $A(\cdot)$ is a compact almost automorphic matrix and the system $$x'(t) = A(t)x(t)\, ,$$ possesses an exponential dichotomy with Green function $G(\cdot, \cdot)$, then its associated system $$y'(t) = B(t)y(t)\, ,$$ where $B(\cdot) \in H(A)$ (the hull of $A(\cdot)$) also possesses an exponential dichotomy. Moreover, the Green function $G(\cdot, \cdot)$ is compact Bi-almost automorphic in $\mathbb{R}2$, this implies that $G(\cdot, \cdot)$ is $\Delta_2$ - like uniformly continuous, where $\Delta_2$ is the principal diagonal of $\mathbb{R}2$, an important ingredient in the proof of invariance of the compact almost automorphic function space under convolution product with kernel $G(\cdot, \cdot)$. Finally, we study the existence of a positive compact almost automorphic solution of non-autonomous differential equations of biological interest having non-linear harvesting terms and mixed delays.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.