Unveiling the existence of nontensorial gravitational-wave polarizations from individual supermassive black hole binaries with pulsar timing arrays (2404.16680v2)
Abstract: With the strong evidence for a gravitational wave (GW) background in the nanohertz frequency band from pulsar timing arrays, the detection of continuous GWs from individual supermassive black hole binaries is already at the dawn. Utilizing continuous GWs to test theories of gravity, especially to test the polarizations of GWs is becoming more and more realistic. In this theoretical study, assuming a detection of signals from individual supermassive binary black holes, we use the null stream to estimate the capability of identifying the nontensorial polarizations of GWs. We consider cases for the nontensorial polarizations where the dipole radiation and quadrupole radiation dominate separately. With a frequentist method, we estimate the threshold of the nontensor-to-tensor relative amplitude above which extra polarizations can be detected. We also conduct Bayesian analysis to estimate parameters with the null stream data. Our treatment provides a data-analysis methodology using the null stream to probe the nontensorial GW polarizations with pulsar timing arrays.
- G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023a), arXiv:2306.16213 [astro-ph.HE] .
- J. Antoniadis et al. (EPTA), (2023a), arXiv:2306.16214 [astro-ph.HE] .
- D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
- H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
- G. Janssen et al., PoS AASKA14, 037 (2015), arXiv:1501.00127 [astro-ph.IM] .
- A. Afzal et al. (NANOGrav), Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
- J. Antoniadis et al. (EPTA), (2023b), arXiv:2306.16227 [astro-ph.CO] .
- C. Smarra et al. (EPTA), (2023), arXiv:2306.16228 [astro-ph.HE] .
- S. Wang and Z.-C. Zhao, (2023), arXiv:2307.04680 [astro-ph.HE] .
- T. Jacobson and D. Mattingly, Phys. Rev. D 70, 024003 (2004), arXiv:gr-qc/0402005 .
- S. J. Chamberlin and X. Siemens, Phys. Rev. D 85, 082001 (2012), arXiv:1111.5661 [astro-ph.HE] .
- R. C. Bernardo and K.-W. Ng, Phys. Rev. D 107, 044007 (2023), arXiv:2208.12538 [gr-qc] .
- Q. Liang and M. Trodden, Phys. Rev. D 104, 084052 (2021), arXiv:2108.05344 [astro-ph.CO] .
- G. Agazie et al., (2023b), arXiv:2310.12138 [gr-qc] .
- G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L50 (2023c), arXiv:2306.16222 [astro-ph.HE] .
- J. Antoniadis et al. (EPTA), (2023c), arXiv:2306.16226 [astro-ph.HE] .
- R. Niu and W. Zhao, Sci. China Phys. Mech. Astron. 62, 970411 (2019), arXiv:1812.00208 [gr-qc] .
- M. Isi and A. J. Weinstein, (2017), arXiv:1710.03794 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 141101 (2017), arXiv:1709.09660 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 120, 201102 (2018), arXiv:1802.10194 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 103, 122002 (2021a), arXiv:2010.14529 [gr-qc] .
- Y. Guersel and M. Tinto, Phys. Rev. D 40, 3884 (1989).
- J. D. Romano and N. J. Cornish, Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
- J. D. Romano and B. Allen, (2023), arXiv:2308.05847 [gr-qc] .
- J. P. W. Verbiest et al., Mon. Not. Roy. Astron. Soc. 458, 1267 (2016), arXiv:1602.03640 [astro-ph.IM] .
- G. Ashton et al., Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
- J. S. Speagle, Mon. Not. Roy. Astron. Soc. 493, 3132 (2020), arXiv:1904.02180 [astro-ph.IM] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.