Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Unveiling the existence of nontensorial gravitational-wave polarizations from individual supermassive black hole binaries with pulsar timing arrays (2404.16680v2)

Published 25 Apr 2024 in gr-qc

Abstract: With the strong evidence for a gravitational wave (GW) background in the nanohertz frequency band from pulsar timing arrays, the detection of continuous GWs from individual supermassive black hole binaries is already at the dawn. Utilizing continuous GWs to test theories of gravity, especially to test the polarizations of GWs is becoming more and more realistic. In this theoretical study, assuming a detection of signals from individual supermassive binary black holes, we use the null stream to estimate the capability of identifying the nontensorial polarizations of GWs. We consider cases for the nontensorial polarizations where the dipole radiation and quadrupole radiation dominate separately. With a frequentist method, we estimate the threshold of the nontensor-to-tensor relative amplitude above which extra polarizations can be detected. We also conduct Bayesian analysis to estimate parameters with the null stream data. Our treatment provides a data-analysis methodology using the null stream to probe the nontensorial GW polarizations with pulsar timing arrays.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L8 (2023a), arXiv:2306.16213 [astro-ph.HE] .
  2. J. Antoniadis et al. (EPTA),   (2023a), arXiv:2306.16214 [astro-ph.HE] .
  3. D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
  4. H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
  5. G. Janssen et al., PoS AASKA14, 037 (2015), arXiv:1501.00127 [astro-ph.IM] .
  6. A. Afzal et al. (NANOGrav), Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
  7. J. Antoniadis et al. (EPTA),   (2023b), arXiv:2306.16227 [astro-ph.CO] .
  8. C. Smarra et al. (EPTA),   (2023), arXiv:2306.16228 [astro-ph.HE] .
  9. S. Wang and Z.-C. Zhao,   (2023), arXiv:2307.04680 [astro-ph.HE] .
  10. T. Jacobson and D. Mattingly, Phys. Rev. D 70, 024003 (2004), arXiv:gr-qc/0402005 .
  11. S. J. Chamberlin and X. Siemens, Phys. Rev. D 85, 082001 (2012), arXiv:1111.5661 [astro-ph.HE] .
  12. R. C. Bernardo and K.-W. Ng, Phys. Rev. D 107, 044007 (2023), arXiv:2208.12538 [gr-qc] .
  13. Q. Liang and M. Trodden, Phys. Rev. D 104, 084052 (2021), arXiv:2108.05344 [astro-ph.CO] .
  14. G. Agazie et al.,   (2023b), arXiv:2310.12138 [gr-qc] .
  15. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951, L50 (2023c), arXiv:2306.16222 [astro-ph.HE] .
  16. J. Antoniadis et al. (EPTA),   (2023c), arXiv:2306.16226 [astro-ph.HE] .
  17. R. Niu and W. Zhao, Sci. China Phys. Mech. Astron. 62, 970411 (2019), arXiv:1812.00208 [gr-qc] .
  18. M. Isi and A. J. Weinstein,   (2017), arXiv:1710.03794 [gr-qc] .
  19. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 119, 141101 (2017), arXiv:1709.09660 [gr-qc] .
  20. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 120, 201102 (2018), arXiv:1802.10194 [gr-qc] .
  21. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 103, 122002 (2021a), arXiv:2010.14529 [gr-qc] .
  22. Y. Guersel and M. Tinto, Phys. Rev. D 40, 3884 (1989).
  23. J. D. Romano and N. J. Cornish, Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
  24. J. D. Romano and B. Allen,   (2023), arXiv:2308.05847 [gr-qc] .
  25. J. P. W. Verbiest et al., Mon. Not. Roy. Astron. Soc. 458, 1267 (2016), arXiv:1602.03640 [astro-ph.IM] .
  26. G. Ashton et al., Astrophys. J. Suppl. 241, 27 (2019), arXiv:1811.02042 [astro-ph.IM] .
  27. J. S. Speagle, Mon. Not. Roy. Astron. Soc. 493, 3132 (2020), arXiv:1904.02180 [astro-ph.IM] .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: