Confluent functions, Laguerre polynomials and their (generalized) bilinear integrals (2404.16539v1)
Abstract: We review properties of confluent functions and the closely related Laguerre polynomials, and determine their bilinear integrals. As is well-known, these integrals are convergent only for a limited range of parameters. However, when one uses the generalized integral they can be computed essentially without restricting the parameters. This gives the (generalized) Gram matrix of Laguerre polynomials. If the parameters are not negative integers, then Laguerre polynomials are orthogonal, or at least pseudo-orthogonal in the case of generalized integrals. For negative integer parameters, the orthogonality relations are more complicated.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.