Papers
Topics
Authors
Recent
2000 character limit reached

Quadratic Euler Characteristic of Symmetric Powers of Curves (2404.16378v2)

Published 25 Apr 2024 in math.AG

Abstract: We compute the quadratic Euler characteristic of the symmetric powers of a smooth, projective curve over any field $k$ that is not of characteristic two, using the Motivic Gauss-Bonnet Theorem of Levine-Raksit. As an application, we show over a field of characteristic zero that the power structure on the Grothendieck-Witt ring introduced by Pajwani-P\'al computes the compactly supported $\mathbb{A}1$-Euler characteristic of symmetric powers for all curves.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.