Papers
Topics
Authors
Recent
2000 character limit reached

Reverse engineering the brain input: Network control theory to identify cognitive task-related control nodes (2404.16357v1)

Published 25 Apr 2024 in q-bio.NC, cs.SY, and eess.SY

Abstract: The human brain receives complex inputs when performing cognitive tasks, which range from external inputs via the senses to internal inputs from other brain regions. However, the explicit inputs to the brain during a cognitive task remain unclear. Here, we present an input identification framework for reverse engineering the control nodes and the corresponding inputs to the brain. The framework is verified with synthetic data generated by a predefined linear system, indicating it can robustly reconstruct data and recover the inputs. Then we apply the framework to the real motor-task fMRI data from 200 human subjects. Our results show that the model with sparse inputs can reconstruct neural dynamics in motor tasks ($EV=0.779$) and the identified 28 control nodes largely overlap with the motor system. Underpinned by network control theory, our framework offers a general tool for understanding brain inputs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. L. Pessoa, “The entangled brain,” Journal of cognitive neuroscience, vol. 35, no. 3, pp. 349–360, 2023.
  2. L. Zhang, J. Q. Gan, Y. Zhu, J. Wang, and H. Wang, “Eeg source-space synchrostate transitions and markov modeling in the math-gifted brain during a long-chain reasoning task,” Human brain mapping, vol. 41, no. 13, pp. 3620–3636, 2020.
  3. T. Ito, L. J. Hearne, and M. W. Cole, “A cortical hierarchy of localized and distributed processes revealed via dissociation of task activations, connectivity changes, and intrinsic timescales,” NeuroImage, vol. 221, p. 117141, 2020.
  4. R. Wang, X. Su, Z. Chang, P. Lin, and Y. Wu, “Flexible brain transitions between hierarchical network segregation and integration associated with cognitive performance during a multisource interference task,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 4, pp. 1835–1846, 2021.
  5. G. Deco, D. Vidaurre, and M. L. Kringelbach, “Revisiting the global workspace orchestrating the hierarchical organization of the human brain,” Nature human behaviour, vol. 5, no. 4, pp. 497–511, 2021.
  6. Q. Liu, S. Farahibozorg, C. Porcaro, N. Wenderoth, and D. Mantini, “Detecting large-scale networks in the human brain using high-density electroencephalography,” Human brain mapping, vol. 38, no. 9, pp. 4631–4643, 2017.
  7. C. L. Grady, J. R. Rieck, D. Nichol, K. M. Rodrigue, and K. M. Kennedy, “Influence of sample size and analytic approach on stability and interpretation of brain-behavior correlations in task-related fmri data,” Human Brain Mapping, vol. 42, no. 1, pp. 204–219, 2021.
  8. H. Wu, X. Mai, H. Tang, Y. Ge, Y.-J. Luo, and C. Liu, “Dissociable somatotopic representations of chinese action verbs in the motor and premotor cortex,” Scientific Reports, vol. 3, no. 1, p. 2049, 2013.
  9. A. Walther, H. Nili, N. Ejaz, A. Alink, N. Kriegeskorte, and J. Diedrichsen, “Reliability of dissimilarity measures for multi-voxel pattern analysis,” Neuroimage, vol. 137, pp. 188–200, 2016.
  10. Y. Zhang, L. Tetrel, B. Thirion, and P. Bellec, “Functional annotation of human cognitive states using deep graph convolution,” NeuroImage, vol. 231, p. 117847, 2021.
  11. Z. Ye, Y. Qu, Z. Liang, M. Wang, and Q. Liu, “Explainable fmri-based brain decoding via spatial temporal-pyramid graph convolutional network,” Human Brain Mapping, vol. 44, no. 7, pp. 2921–2935, 2023.
  12. Y. Yang, S. Qiao, O. G. Sani, J. I. Sedillo, B. Ferrentino, B. Pesaran, and M. M. Shanechi, “Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation,” Nature biomedical engineering, vol. 5, no. 4, pp. 324–345, 2021.
  13. S. Gu, R. F. Betzel, M. G. Mattar, M. Cieslak, P. R. Delio, S. T. Grafton, F. Pasqualetti, and D. S. Bassett, “Optimal trajectories of brain state transitions,” Neuroimage, vol. 148, pp. 305–317, 2017.
  14. D. A. McCormick, D. B. Nestvogel, and B. J. He, “Neuromodulation of brain state and behavior,” Annual review of neuroscience, vol. 43, pp. 391–415, 2020.
  15. S. Gu, F. Pasqualetti, M. Cieslak, Q. K. Telesford, A. B. Yu, A. E. Kahn, J. D. Medaglia, J. M. Vettel, M. B. Miller, S. T. Grafton et al., “Controllability of structural brain networks,” Nature communications, vol. 6, no. 1, p. 8414, 2015.
  16. S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse identification of nonlinear dynamics with control (sindyc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710–715, 2016.
  17. Z. Liang, Z. Luo, K. Liu, J. Qiu, and Q. Liu, “Online learning koopman operator for closed-loop electrical neurostimulation in epilepsy,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 1, pp. 492–503, 2022.
  18. B. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M. Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. Polimeni et al., “The organization of the human cerebral cortex estimated by intrinsic functional connectivity,” Journal of neurophysiology, 2011.
  19. M. Wang, K. Lou, Z. Liu, P. Wei, and Q. Liu, “Multi-objective optimization via evolutionary algorithm (movea) for high-definition transcranial electrical stimulation of the human brain,” NeuroImage, vol. 280, p. 120331, 2023.
  20. K. K. H. Manjunatha, G. Baron, D. Benozzo, E. Silvestri, M. Corbetta, A. Chiuso, A. Bertoldo, S. Suweis, and M. Allegra, “Controlling target brain regions by optimal selection of input nodes,” PLOS Computational Biology, vol. 20, no. 1, p. e1011274, 2024.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: