Two qubit gate with macroscopic singlet-triplet qubits in synthetic spin-one chains in InAsP quantum dot nanowires (2404.16229v1)
Abstract: We present a theory of a two qubit gate with macroscopic singlet-triplet (ST) qubits in synthetic spin-one chains in InAsP quantum dot nanowires. The macroscopic topologically protected singlet-triplet qubits are built with two spin-half Haldane quasiparticles. The Haldane quasiparticles are hosted by synthetic spin-one chain realized in chains of InAsP quantum dots embedded in an InP nanowire, with four electrons each. The quantum dot nanowire is described by a Hubbard-Kanamori (HK) Hamiltonian derived from an interacting atomistic model. Using exact diagonalization and Matrix Product States (MPS) tools, we demonstrate that the low-energy behavior of the HK Hamiltonian is effectively captured by an antiferromagnetic spin-one chain Hamiltonian. Next we consider two macroscopic qubits and present a method for creating a tunable coupling between the two macroscopic qubits by inserting an intermediate control dot between the two chains. Finally, we propose and demonstrate two approaches for generating highly accurate two-ST qubit gates : (1) by controlling the length of each qubit, and (2) by employing different background magnetic fields for the two qubits.
- F. Hassler, A. R. Akhmerov, and C. W. J. Beenakker, The top-transmon: a hybrid superconducting qubit for parity-protected quantum computation, New Journal of Physics 13, 095004 (2011).
- J. M. Gambetta, J. M. Chow, and M. Steffen, Building logical qubits in a superconducting quantum computing system, npj quantum information 3, 2 (2017).
- E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, nature 409, 46 (2001).
- T. Northup and R. Blatt, Quantum information transfer using photons, Nature photonics 8, 356 (2014).
- M. Korkusinski and P. Hawrylak, Energy-band structure: Energy-band gaps, in Semiconductor Quantum Bits (Jenny Stanford Publishing, 2008) Chap. 1, pp. 3–32.
- C. Kloeffel and D. Loss, Prospects for spin-based quantum computing in quantum dots, Annual Review of Condensed Matter Physics 4, 51 (2013).
- J. A. Brum and P. Hawrylak, Coupled quantum dots as quantum exclusive-OR gate, Superlattices and Microstructures 22, 431 (1997).
- D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57, 120 (1998).
- J. D. Sau and S. D. Sarma, Realizing a robust practical majorana chain in a quantum-dot-superconductor linear array, Nature communications 3, 964 (2012).
- F. Meier, J. Levy, and D. Loss, Quantum computing with antiferromagnetic spin clusters, Phys. Rev. B 68, 134417 (2003).
- N. Chancellor and S. Haas, Using the J1–J2subscript𝐽1–subscript𝐽2J_{1}–J_{2}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT – italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT quantum spin chain as an adiabatic quantum data bus, New Journal of Physics 14, 095025 (2012).
- B. Jaworowski and P. Hawrylak, Quantum bits with macroscopic topologically protected states in semiconductor devices, Applied Sciences 9 (2019).
- P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys. Rev. Lett. 79, 3306 (1997).
- P. Zanardi and F. Rossi, Quantum information in semiconductors: Noiseless encoding in a quantum-dot array, Phys. Rev. Lett. 81, 4752 (1998).
- J. Manalo, D. Miravet, and P. Hawrylak, Microscopic design of a synthetic spin-1 chain in an InAsP quantum dot array, Phys. Rev. B 109, 085112 (2024).
- F. Haldane, Continuum dynamics of the 1-D heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model, Physics Letters A 93, 464 (1983).
- F. D. M. Haldane, Nobel lecture: Topological quantum matter, Rev. Mod. Phys. 89, 040502 (2017).
- G. Catarina and J. Fernández-Rossier, Hubbard model for spin-1 haldane chains, Phys. Rev. B 105, L081116 (2022).
- S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
- U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259 (2005).
- B. Jaworowski, Electron Correlations in Topological Flat Bands, Ph.D. thesis, Wroclaw University of Science and Technology (2018).
- M. A. Nielsen and I. L. Chuang, Quantum circuits, in Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010) Chap. 4, pp. 171–215.
- J. Levy, Universal quantum computation with spin-1/2121/21 / 2 pairs and heisenberg exchange, Phys. Rev. Lett. 89, 147902 (2002).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.