Papers
Topics
Authors
Recent
2000 character limit reached

A hybrid source of quantum light for generation of frequency tunable Fock states (2404.15908v2)

Published 24 Apr 2024 in quant-ph and physics.optics

Abstract: We propose a scheme for quantum-light generation in a nonlinear cavity hybridized with a 2-level system and theoretically show that, when excited by a series of controlled pump pulses, the hybrid source generates Fock states with high probabilities. E.g., 1- and 2-photon states can be generated near-on-demand, and Fock states with up to $7$ photons with a probability above $50\%$. The tailorable nature of the nonlinear cavity allows for generating Fock states with arbitrary frequencies, even with a fixed 2-level system, creating fundamentally new opportunities in all areas of quantum technologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. F. Flamini, N. Spagnolo, and F. Sciarrino, Photonic quantum information processing: a review, Reports on Progress in Physics 82, 016001 (2018).
  2. M. Perarnau-Llobet, A. González-Tudela, and J. I. Cirac, Multimode fock states with large photon number: effective descriptions and applications in quantum metrology, Quantum Science and Technology 5, 025003 (2020).
  3. L. Barsotti, J. Harms, and R. Schnabel, Squeezed vacuum states of light for gravitational wave detectors, Reports on Progress in Physics 82, 016905 (2018).
  4. P. Solano, Deterministic generation of large fock states, Physical Review Letters 125, 093603 (2020).
  5. E. Waks, E. Diamanti, and Y. Yamamoto, Generation of photon number states, New Journal of Physics 8, 4 (2006).
  6. Y. Wang, K. D. Jöns, and Z. Sun, Integrated photon-pair sources with nonlinear optics, Applied Physics Reviews 8 (2021).
  7. C. Leroux, L. C. G. Govia, and A. A. Clerk, Enhancing cavity quantum electrodynamics via antisqueezing: Synthetic ultrastrong coupling, Phys. Rev. Lett. 120, 093602 (2018).
  8. B. L. Schumaker and C. M. Caves, New formalism for two-photon quantum optics. ii. mathematical foundation and compact notation, Physical Review A 31, 3093 (1985).
  9. E. Meyer-Scott, C. Silberhorn, and A. Migdall, Single-photon sources: Approaching the ideal through multiplexing, Review of Scientific Instruments 91, 041101 (2020).
  10. S. Saravi, T. Pertsch, and F. Setzpfandt, Lithium niobate on insulator: an emerging platform for integrated quantum photonics, Advanced Optical Materials 9, 2100789 (2021).
  11. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
  12. E. T. Jaynes and F. W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE 51, 89 (1963).
  13. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, Computer Physics Communications 183, 1760 (2012).
  14. See Supplemental Material at [URL-will-be-inserted-by-publisher].
  15. M. V. Chekhova and Z. Y. Ou, Nonlinear interferometers in quantum optics, Advances in Optics and Photonics 8, 104 (2016).
  16. P. Lodahl, S. Mahmoodian, and S. Stobbe, Interfacing single photons and single quantum dots with photonic nanostructures, Rev. Mod. Phys. 87, 347 (2015).
  17. B. Merkel, A. Ulanowski, and A. Reiserer, Coherent and purcell-enhanced emission from erbium dopants in a cryogenic high-q𝑞qitalic_q resonator, Phys. Rev. X 10, 041025 (2020).
  18. M. Walschaers, Non-gaussian quantum states and where to find them, PRX Quantum 2, 030204 (2021).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.