Papers
Topics
Authors
Recent
2000 character limit reached

Jamming memory into acoustically trained dense suspensions under shear (2404.15850v1)

Published 24 Apr 2024 in cond-mat.soft

Abstract: Systems driven far from equilibrium often retain structural memories of their processing history. This memory has, in some cases, been shown to dramatically alter the material response. For example, work hardening in crystalline metals can alter the hardness, yield strength, and tensile strength to prevent catastrophic failure. Whether memory of processing history can be similarly exploited in flowing systems, where significantly larger changes in structure should be possible, remains poorly understood. Here, we demonstrate a promising route to embedding such useful memories. We build on work showing that exposing a sheared dense suspension to acoustic perturbations of different power allows for dramatically tuning the sheared suspension viscosity and underlying structure. We find that, for sufficiently dense suspensions, upon removing the acoustic perturbations, the suspension shear jams with shear stress contributions from the maximum compressive and maximum extensive axes that reflect the acoustic training. Because the contributions from these two orthogonal axes to the total shear stress are antagonistic, it is possible to tune the resulting suspension response in surprising ways. For example, we show that differently trained sheared suspensions exhibit: 1) different susceptibility to the same acoustic perturbation; 2) orders of magnitude changes in their instantaneous viscosities upon shear reversal; and 3) even a shear stress that increases in magnitude upon shear cessation. To further illustrate the power of this approach for controlling suspension properties, we demonstrate that flowing states well below the shear jamming threshold can be shear jammed via acoustic training. Collectively, our work paves the way for using acoustically induced memory in dense suspensions to generate rapidly and widely tunable materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (103)
  1. M. Tant and G. Wilkes, “An overview of the nonequilibrium behavior of polymer glasses.,” 1981.
  2. K. Jonason, E. Vincent, J. Hammann, J. P. Bouchaud, and P. Nordblad, “Memory and chaos effects in spin glasses,” Physical Review Letters, 81, no. 15, p. 3243, 1998.
  3. D. J. Pine, J. P. Gollub, J. F. Brady, and A. M. Leshansky, “Chaos and threshold for irreversibility in sheared suspensions,” Nature, vol. 438, no. 7070, pp. 997–1000, 2005.
  4. L. Corte, P. M. Chaikin, J. P. Gollub, and D. J. Pine, “Random organization in periodically driven systems,” Nature Physics, vol. 4, no. 5, pp. 420–424, 2008.
  5. J. C. Mauro, D. C. Allan, and M. Potuzak, “Nonequilibrium viscosity of glass,” Physical Review B, vol. 80, no. 9, p. 094204, 2009.
  6. R. Xiao, J. Choi, N. Lakhera, C. M. Yakacki, C. P. Frick, and T. D. Nguyen, “Modeling the glass transition of amorphous networks for shape-memory behavior,” Journal of the Mechanics and Physics of Solids, vol. 61, no. 7, pp. 1612–1635, 2013.
  7. N. C. Keim, J. D. Paulsen, and S. R. Nagel, “Multiple transient memories in sheared suspensions: Robustness, structure, and routes to plasticity,” Physical Review E, vol. 88, no. 3, p. 032306, 2013.
  8. D. Fiocco, G. Foffi, and S. Sastry, “Encoding of memory in sheared amorphous solids,” Physical Review Letters, vol. 112, no. 2, p. 025702, 2014.
  9. V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, “Influence of disorder on ageing and memory effects in non-equilibrium critical dynamics of 3d ising model relaxing from an ordered state,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2016, no. 4, p. 043303, 2016.
  10. N. C. Keim, J. D. Paulsen, Z. Zeravcic, S. Sastry, and S. R. Nagel, “Memory formation in matter,” Reviews of Modern Physics, vol. 91, no. 3, p. 035002, 2019.
  11. N. Pashine, D. Hexner, A. J. Liu, and S. R. Nagel, “Directed aging, memory, and nature’s greed,” Science advances, vol. 5, no. 12, p. eaax4215, 2019.
  12. E. G. Teich, K. L. Galloway, P. E. Arratia, and D. S. Bassett, “Crystalline shielding mitigates structural rearrangement and localizes memory in jammed systems under oscillatory shear,” Science Advances, vol. 7, no. 20, p. eabe3392, 2021.
  13. C. W. Lindeman and S. R. Nagel, “Multiple memory formation in glassy landscapes,” Science Advances, vol. 7, no. 33, p. eabg7133, 2021.
  14. F. Arceri, E. I. Corwin, and V. F. Hagh, “Marginal stability in memory training of jammed solids,” Physical Review E, vol. 104, no. 4, p. 044907, 2021.
  15. Y. Zhao, Y. Zhao, D. Wang, H. Zheng, B. Chakraborty, J. E. S. Socolar, “Ultrastable shear-jammed granular material,” Physical Review X, vol. 12, no. 3, p. 031021, 2022.
  16. Y. Zhao, Y. Zhao, D. Wang, H. Zheng, B. Chakraborty, and J. E. Socolar, “Microscopic reversibility and emergent elasticity in ultrastable granular systems,” Frontiers in Physics, vol. 10, p. 1226, 2022.
  17. B. VanSaders, J. Dshemuchadse, and S. C. Glotzer, “Strain fields in repulsive colloidal crystals,” Physical Review Materials, vol. 2, no. 6, p. 063604, 2018.
  18. E. Berthier, J. E. Kollmer, S. E. Henkes, K. Liu, J. M. Schwarz, and K. E. Daniels, “Rigidity percolation control of the brittle-ductile transition in disordered networks,” Physical Review Materials, vol. 3, no. 7, p. 075602, 2019.
  19. J. Koehler, “The nature of work-hardening,” Physical Review, vol. 86, no. 1, p. 52, 1952.
  20. N. F. Mott, “Cxvii. a theory of work-hardening of metal crystals,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 43, no. 346, pp. 1151–1178, 1952.
  21. U. Kocks, “Laws for work-hardening and low-temperature creep,” 1976.
  22. J. G. Sevillano, P. Van Houtte, and E. Aernoudt, “Large strain work hardening and textures,” Progress in materials science, vol. 25, no. 2-4, pp. 69–134, 1980.
  23. D. C. Hong, S. Yue, J. K. Rudra, M. Y. Choi, and Y. W. Kim, “Granular relaxation under tapping and the traffic problem,” Physical Review E, vol. 50, no. 5, p. 4123, 1994.
  24. C. Lesaffre, V. Mineau, D. Picart, and H. Van Damme, “Densification under vibration of a saturated granular packing,” Comptes Rendus de l’Académie des Sciences-Series IV-Physics, vol. 1, no. 5, pp. 647–653, 2000.
  25. B. Slocombe, A. Bell, and J. Baez, “The densification of granular soils using vibro methods,” Géotechnique, vol. 50, no. 6, pp. 715–725, 2000.
  26. P. Philippe and D. Bideau, “Compaction dynamics of a granular medium under vertical tapping,” Europhysics Letters, vol. 60, no. 5, p. 677, 2002.
  27. P. Richard, M. Nicodemi, R. Delannay, P. Ribiere, and D. Bideau, “Slow relaxation and compaction of granular systems,” Nature materials, vol. 4, no. 2, pp. 121–128, 2005.
  28. P. Ribiere, P. Richard, P. Philippe, D. Bideau, and R. Delannay, “On the existence of stationary states during granular compaction,” The European Physical Journal E, vol. 22, pp. 249–253, 2007.
  29. N. Iikawa, M. M. Bandi, and H. Katsuragi, “Structural evolution of a granular pack under manual tapping,” Journal of the Physical Society of Japan, vol. 84, no. 9, p. 094401, 2015.
  30. D. Vågberg, P. Olsson, and S. Teitel, “Glassiness, rigidity, and jamming of frictionless soft core disks,” Physical Review E, vol. 83, no. 3, p. 031307, 2011.
  31. K. Galloway, E. Teich, X. Ma, C. Kammer, I. Graham, N. Keim, C. Reina, D. Jerolmack, A. Yodh, and P. Arratia, “Relationships between structure, memory and flow in sheared disordered materials,” Nature Physics, vol. 18, no. 5, pp. 565–570, 2022.
  32. E. M. Schwen, M. Ramaswamy, C.-M. Cheng, L. Jan, and I. Cohen, “Embedding orthogonal memories in a colloidal gel through oscillatory shear,” Soft matter, vol. 16, no. 15, pp. 3746–3752, 2020.
  33. C. P. Goodrich, A. J. Liu, and S. R. Nagel, “The principle of independent bond-level response: Tuning by pruning to exploit disorder for global behavior,” Physical Review Letters, vol. 114, no. 22, p. 225501, 2015.
  34. J. W. Rocks, N. Pashine, I. Bischofberger, C. P. Goodrich, A. J. Liu, and S. R. Nagel, “Designing allostery-inspired response in mechanical networks,” Proceedings of the National Academy of Sciences, vol. 114, no. 10, pp. 2520–2525, 2017.
  35. D. R. Reid, N. Pashine, J. M. Wozniak, H. M. Jaeger, A. J. Liu, S. R. Nagel, and J. J. de Pablo, “Auxetic metamaterials from disordered networks,” Proceedings of the National Academy of Sciences, vol. 115, no. 7, pp. E1384–E1390, 2018.
  36. D. Hexner, A. J. Liu, and S. R. Nagel, “Role of local response in manipulating the elastic properties of disordered solids by bond removal,” Soft matter, vol. 14, no. 2, pp. 312–318, 2018.
  37. D. B. Liarte, O. Stenull, and T. C. Lubensky, “Multifunctional twisted kagome lattices: Tuning by pruning mechanical metamaterials,” Physical Review E, vol. 101, no. 6, p. 063001, 2020.
  38. D. R. Reid, N. Pashine, A. S. Bowen, S. R. Nagel, and J. J. de Pablo, “Ideal isotropic auxetic networks from random networks,” Soft Matter, vol. 15, no. 40, pp. 8084–8091, 2019.
  39. Z. Jin, C. Fang, X. Shen, and L. Xu, “Designing amorphous networks with adjustable poisson ratio from a simple triangular lattice,” Physical Review Applied, vol. 18, no. 5, p. 054052, 2022.
  40. N. Pashine, A. M. Nasab, and R. Kramer-Bottiglio, “Reprogrammable allosteric metamaterials from disordered networks,” Soft Matter, vol. 19, no. 8, pp. 1617–1623, 2023.
  41. M. E. Cates, J. P. Wittmer, J. P. Bouchaud, and P. Claudin, “Jamming, force chains, and fragile matter,” Physical Review Letters, vol. 81, no. 9, p. 1841, 1998.
  42. A. J. Liu and S. R. Nagel, “Jamming is not just cool any more,” Nature, vol. 396, no. 6706, pp. 21–22, 1998.
  43. D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer, “Jamming by shear,” Nature, vol. 480, no. 7377, pp. 355–358, 2011.
  44. T. Bertrand, R. P. Behringer, B. Chakraborty, C. S. O’Hern, and M. D. Shattuck, “Protocol dependence of the jamming transition,” Physical Review E, vol. 93, no. 1, p. 012901, 2016.
  45. H. Vinutha and S. Sastry, “Disentangling the role of structure and friction in shear jamming,” Nature Physics, vol. 12, no. 6, pp. 578–583, 2016.
  46. S. Luding, “So much for the jamming point,” Nature physics, vol. 12, no. 6, pp. 531–532, 2016.
  47. E. Han, I. R. Peters, and H. M. Jaeger, “High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming,” Nature communications, vol. 7, no. 1, pp. 1–8, 2016.
  48. I. R. Peters, S. Majumdar, and H. M. Jaeger, “Direct observation of dynamic shear jamming in dense suspensions,” Nature, vol. 532, no. 7598, pp. 214–217, 2016.
  49. O. Rømcke, I. R. Peters, and R. J. Hearst, “Collision of dynamic jamming fronts in a dense suspension,” Physical Review Fluids, vol. 6, no. 10, p. 103301, 2021.
  50. S. Henkes, D. A. Quint, Y. Fily, and J. M. Schwarz, “Rigid cluster decomposition reveals criticality in frictional jamming,” Physical Review Letters, vol. 116, no. 2, p. 028301, 2016.
  51. P. Sehgal, M. Ramaswamy, I. Cohen, and B. J. Kirby, “Using acoustic perturbations to dynamically tune shear thickening in colloidal suspensions,” Physical Review Letters, vol. 123, no. 12, p. 128001, 2019.
  52. P. Sehgal, M. Ramaswamy, E. Y. Ong, C. Ness, I. Cohen, and B. J. Kirby, “Viscosity metamaterials,” arXiv preprint arXiv:2206.01141, 2022.
  53. C. Ness, R. Mari, and M. E. Cates, “Shaken and stirred: Random organization reduces viscosity and dissipation in granular suspensions,” Science Advances, vol. 4, no. 3, p. eaar3296, 2018.
  54. M. Ramaswamy, I. Griniasty, J. P. Sethna, B. Chakraborty, and I. Cohen, “Incorporating tunability into a universal scaling framework for shear thickening,” arXiv preprint arXiv:2205.02184, 2022.
  55. R. Seto, A. Singh, B. Chakraborty, M. M. Denn, and J. F. Morris, “Shear jamming and fragility in dense suspensions,” Granular Matter, vol. 21, no. 3, pp. 1–8, 2019.
  56. L. E. Edens, E. G. Alvarado, A. Singh, J. F. Morris, G. K. Schenter, J. Chun, and A. E. Clark, “Shear stress dependence of force networks in 3d dense suspensions,” Soft Matter, vol. 17, no. 32, pp. 7476–7486, 2021.
  57. N. Y. C. Lin, B. M. Guy, M. Hermes, C. Ness, J. Sun, W. C. K. Poon and I. Cohen, “Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions,” Physical Review Letters, vol. 115, 228304, 2015
  58. E. Y. X. Ong, M. Ramaswamy, R. Niu, N. Y. C. Lin, A. Shetty, R. N. Zia, G. H. McKinley, and I. Cohen, “Stress decomposition in LAOS of dense colloidal suspensions,” Journal Of Rheology, vol. 64, 343-351, 2020.
  59. F. Gadala-Maria and A. Acrivos, “Shear-induced structure in a concentrated suspension of solid spheres,” Journal Of Rheology, vol. 24, 799-814, 1980.
  60. T. Narumi, H. See, Y. Honma, T. Hasegawa, T. Takahashi and N. Phan-Thien, “Transient response of concentrated suspensions after shear reversal,” Journal Of Rheology, vol 46, 295-305, 2002.
  61. C. Garat, S. Richter, P. Lidon, A. Colin and G. Ovarlez, “Using good vibrations: Melting and controlled shear jamming of dense granular suspensions,” Journal Of Rheology, vol. 66, 237-256, 2022.
  62. J. P. Bouchaud, P. Claudin, M. E. Cates, and J. P. Wittmer, “Models of stress propagation in granular media,” Physics of dry granular media, pp. 97–122, 1998.
  63. F. Ianni, D. Lasne, R. Sarcia, and P. Hébraud, “Relaxation of jammed colloidal suspensions after shear cessation,” Physical Review E, vol. 74, no. 1, p. 011401, 2006.
  64. R. Maharjan and E. Brown, “Giant deviation of a relaxation time from generalized newtonian theory in discontinuous shear thickening suspensions,” Physical Review Fluids, vol. 2, no. 12, p. 123301, 2017.
  65. A. Baumgarten, and K. Kamrin, “Modeling stress relaxation in dense, fine-particle suspensions,” Journal Of Rheology, vol. 64, 367-377, 2020.
  66. S. Barik and S. Majumdar, “Origin of two distinct stress relaxation regimes in shear jammed dense suspensions,” Physical Review Letters, vol. 128, no. 25, p. 258002, 2022.
  67. N. Y. Lin, C. Ness, M. E. Cates, J. Sun, and I. Cohen, “Tunable shear thickening in suspensions,” Proceedings of the National Academy of Sciences, vol. 113, no. 39, pp. 10774–10778, 2016.
  68. B. D. Leahy, D. L. Koch, and I. Cohen, “Controlling the alignment of rodlike colloidal particles with time-dependent shear flows,” Journal of Rheology, vol. 61, no. 5, pp. 979–996, 2017.
  69. N. Gaudel, S. Kiesgen de Richter, N. Louvet, M. Jenny, and S. Skali-Lami, “Bulk and local rheology in a dense and vibrated granular suspension,” Physical Review E, vol. 96, no. 6, p. 062905, 2017.
  70. T. Gibaud, N. Dagès, P. Lidon, G. Jung, L. C. Ahouré, M. Sztucki, A. Poulesquen, N. Hengl, F. Pignon, and S. Manneville, “Rheoacoustic gels: tuning mechanical and flow properties of colloidal gels with ultrasonic vibrations,” Physical Review X, vol. 10, no. 1, p. 011028, 2020.
  71. R. Niu, M. Ramaswamy, C. Ness, A. Shetty, and I. Cohen, “Tunable solidification of cornstarch under impact: How to make someone walking on cornstarch sink,” Science advances, vol. 6, no. 19, p. eaay6661, 2020.
  72. J. E. Martin and A. Snezhko, “Driving self-assembly and emergent dynamics in colloidal suspensions by time-dependent magnetic fields,” Reports on Progress in Physics, vol. 76, no. 12, p. 126601, 2013.
  73. J. R. Morillas and J. de Vicente, “Magnetorheology: a review,” Soft Matter, vol. 16, no. 42, pp. 9614–9642, 2020.
  74. J. T. Clemmer, I. Srivastava, G. S. Grest, and J. B. Lechman, “Shear is not always simple: Rate-dependent effects of flow type on granular rheology,” Physical Review Letters, vol. 127, no. 26, p. 268003, 2021.
  75. R. Phillips, “Photopolymerization,” Journal of photochemistry, vol. 25, no. 1, pp. 79–82, 1984.
  76. M. Kaur and A. Srivastava, “Photopolymerization: A review,” Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 42, no. 4, pp. 481–512, 2002.
  77. E. J. Lavernia and T. S. Srivatsan, “The rapid solidification processing of materials: science, principles, technology, advances, and applications,” Journal of Materials Science, vol. 45, pp. 287–325, 2010.
  78. D. Posé, L. Verhage, F. Ott, L. Yant, J. Mathieu, G. C. Angenent, R. G. Immink, and M. Schmid, “Temperature-dependent regulation of flowering by antagonistic flm variants,” Nature, vol. 503, no. 7476, pp. 414–417, 2013.
  79. J. J. Casal and S. Balasubramanian, “Thermomorphogenesis,” Annual Review of Plant Biology, vol. 70, pp. 321–346, 2019.
  80. I. P. Voronova, “5-ht receptors and temperature homeostasis,” Biomolecules, vol. 11, no. 12, p. 1914, 2021.
  81. S. Jarić, R. Ropret, M. Kukolj, and D. B. Ilić, “Role of agonist and antagonist muscle strength in performance of rapid movements,” European journal of applied physiology and occupational physiology, vol. 71, pp. 464–468, 1995.
  82. K. G. Holt, R. C. Wagenaar, M. E. LaFiandra, M. Kubo, and J. P. Obusek, “Increased musculoskeletal stiffness during load carriage at increasing walking speeds maintains constant vertical excursion of the body center of mass,” Journal of biomechanics, vol. 36, no. 4, pp. 465–471, 2003.
  83. C. Wade, M. S. Redfern, R. O. Andres, and S. P. Breloff, “Joint kinetics and muscle activity while walking on ballast,” Human factors, vol. 52, no. 5, pp. 560–573, 2010.
  84. A. E. Motter and M. Timme, “Antagonistic phenomena in network dynamics,” Annual review of condensed matter physics, vol. 9, pp. 463–484, 2018.
  85. Y. Feng, T. Ide, H. Nabae, G. Endo, R. Sakurai, S. Ohno, and K. Suzumori, “Experimental comparison of antagonistic hydraulic muscle actuation under single/dual and zero/overlapped servovalve configurations,” Mechatronics, vol. 83, p. 102737, 2022.
  86. J. Sun and S. Sundaresan, “A constitutive model with microstructure evolution for flow of rate-independent granular materials,” Journal of Fluid Mechanics, vol. 682, pp. 590–616, 2011.
  87. R. N. Chacko, R. Mari, S. M. Fielding, and M. E. Cates, “Shear reversal in dense suspensions: The challenge to fabric evolution models from simulation data,” Journal of Fluid Mechanics, vol. 847, pp. 700–734, 2018.
  88. G. G. Giusteri and R. Seto, “Shear jamming and fragility of suspensions in a continuum model with elastic constraints,” Physical Review Letters, vol. 127, no. 13, p. 138001, 2021.
  89. Y. Jin and H. Yoshino, “A jamming plane of sphere packings,” Proceedings of the National Academy of Sciences, vol. 118, no. 14, 2021.
  90. M. Ramaswamy, I. Griniasty, D. B. Liarte, A. Shetty, E. Katifori, E. Del Gado, J. P. Sethna, B. Chakraborty, and I. Cohen, “Universal scaling of shear thickening transitions,” arXiv preprint arXiv:2107.13338, 2021.
  91. D. Hexner, N. Pashine, A. J. Liu, and S. R. Nagel, “Effect of directed aging on nonlinear elasticity and memory formation in a material,” Physical Review Research, vol. 2, no. 4, p. 043231, 2020.
  92. C. Josserand, A. V. Tkachenko, D. M. Mueth, and H. M. Jaeger, “Memory effects in granular materials,” Physical Review Letters, vol. 85, no. 17, p. 3632, 2000.
  93. T. S. Grigera and G. Parisi, “Fast monte carlo algorithm for supercooled soft spheres,” Physical Review E, vol. 63, no. 4, p. 045102(R), 2001.
  94. L. A. Fernandez, V. Martin-Mayor, and P. Verrocchio, “Optimized monte carlo method for glasses,” Philosophical Magazine, vol. 87, no. 3-5, pp. 581–586, 2007.
  95. A. Ninarello, L. Berthier, and D. Coslovich, “Models and algorithms for the next generation of glass transition studies,” Physical Review X, vol. 7, no. 2, p. 021039, 2017.
  96. U. Wolff, “Collective monte carlo updating for spin systems,” Physical Review Letters, vol. 62, no. 4, p. 361, 1989.
  97. H. Kim, A. P. Esser-Kahn, S. J. Rowan and H. M. Jaeger, “Stress-activated friction in sheared suspensions probed with piezoelectric nanoparticles,” Proceedings Of The National Academy Of Sciences, vol. 120, e2310088120, 2023.
  98. S. Pradeep, M. Nabizadeh, A. R. Jacob, S. Jamali and L. C. Hsiao, “Jamming distance dictates colloidal shear thickening,”Physical Review Letters, vol. 127, 158002, 2021.
  99. L. Papadopoulos, M. A. Porter, K. E. Daniels, and D. S. Bassett, “Network analysis of particles and grains,” Journal Of Complex Networks, vol. 6, 485-565, 2018.
  100. M. Bierbaum, B. D. Leahy, A. A. Alemi, I. Cohen, and J. P. Sethna, “Light microscopy at maximal precision,” Physical Review X, vol. 7, 041007, 2017.
  101. B. D Leahy, N. Y. C. Lin, and I. Cohen, “Quantitative light microscopy of dense suspensions: Colloid science at the next decimal place,”Current Opinion In Colloid & Interface Science, vol. 34, pp. 32-46, 2018.
  102. M. Gameiro, A. Singh, L. Kondic, K. Mischaikow, and J. F. Morris, “Interaction network analysis in shear thickening suspensions,” Physical Review Fluids, vol. 5, 034307, 2020.
  103. F. Blanc, F. Peters, J. J. J. Gillissen, M. E. Cates, S. Bosio, C. Benarroche, and R. Mari, “Rheology of dense suspensions under shear rotation,”Physical Review Letters, vol. 130, 118202, 2023.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.