Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Recursive Backwards Q-Learning in Deterministic Environments (2404.15822v1)

Published 24 Apr 2024 in cs.AI and cs.LG

Abstract: Reinforcement learning is a popular method of finding optimal solutions to complex problems. Algorithms like Q-learning excel at learning to solve stochastic problems without a model of their environment. However, they take longer to solve deterministic problems than is necessary. Q-learning can be improved to better solve deterministic problems by introducing such a model-based approach. This paper introduces the recursive backwards Q-learning (RBQL) agent, which explores and builds a model of the environment. After reaching a terminal state, it recursively propagates its value backwards through this model. This lets each state be evaluated to its optimal value without a lengthy learning process. In the example of finding the shortest path through a maze, this agent greatly outperforms a regular Q-learning agent.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 1 like.