Papers
Topics
Authors
Recent
2000 character limit reached

Machine Learning Applied to the Detection of Mycotoxin in Food: A Review

Published 23 Apr 2024 in q-bio.QM and cs.LG | (2404.15387v1)

Abstract: Mycotoxins, toxic secondary metabolites produced by certain fungi, pose significant threats to global food safety and public health. These compounds can contaminate a variety of crops, leading to economic losses and health risks to both humans and animals. Traditional lab analysis methods for mycotoxin detection can be time-consuming and may not always be suitable for large-scale screenings. However, in recent years, ML methods have gained popularity for use in the detection of mycotoxins and in the food safety industry in general, due to their accurate and timely predictions. We provide a systematic review on some of the recent ML applications for detecting/predicting the presence of mycotoxin on a variety of food ingredients, highlighting their advantages, challenges, and potential for future advancements. We address the need for reproducibility and transparency in ML research through open access to data and code. An observation from our findings is the frequent lack of detailed reporting on hyperparameters in many studies as well as a lack of open source code, which raises concerns about the reproducibility and optimisation of the ML models used. The findings reveal that while the majority of studies predominantly utilised neural networks for mycotoxin detection, there was a notable diversity in the types of neural network architectures employed, with convolutional neural networks being the most popular.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (87)
  1. Almoujahed, M. B., Rangarajan, A. K., Whetton, R. L., Vincke, D., Eylenbosch, D., Vermeulen, P., and Mouazen, A. M. (2022), “Detection of fusarium head blight in wheat under field conditions using a hyperspectral camera and machine learning,” Computers and Electronics in Agriculture, 203, 107456.
  2. Alshannaq, A. and Yu, J.-H. (2017), “Occurrence, toxicity, and analysis of major mycotoxins in food,” International journal of environmental research and public health, 14, 632.
  3. Anfossi, L., Giovannoli, C., and Baggiani, C. (2016), “Mycotoxin detection,” Current opinion in biotechnology, 37, 120–126.
  4. Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M., and Teichmann, S. A. (2004), “Structure and evolution of transcriptional regulatory networks,” Current opinion in structural biology, 14, 283–291.
  5. Baştanlar, Y. and Özuysal, M. (2014), “Introduction to machine learning,” miRNomics: MicroRNA biology and computational analysis, 105–128.
  6. Bernardes, R. C., De Medeiros, A., da Silva, L., Cantoni, L., Martins, G. F., Mastrangelo, T., Novikov, A., and Mastrangelo, C. B. (2022), “Deep-learning approach for fusarium head blight detection in wheat seeds using low-cost imaging technology,” Agriculture, 12, 1801.
  7. Branstad-Spates, E. H., Castano-Duque, L., Mosher, G. A., Hurburgh Jr, C. R., Owens, P., Winzeler, E., Rajasekaran, K., and Bowers, E. L. (2023), “Gradient boosting machine learning model to predict aflatoxins in Iowa corn,” Frontiers in Microbiology, 14.
  8. Breiman, L. (2001), “Random forests,” Machine learning, 45, 5–32.
  9. Burges, C. J. (1998), “A tutorial on support vector machines for pattern recognition,” Data mining and knowledge discovery, 2, 121–167.
  10. Buriticá, J. A. and Tesfamariam, S. (2015), “Consequence-based framework for electric power providers using Bayesian belief network,” International Journal of Electrical Power & Energy Systems, 64, 233–241.
  11. Camardo Leggieri, M., Mazzoni, M., and Battilani, P. (2021), “Machine learning for predicting mycotoxin occurrence in maize,” Frontiers in Microbiology, 12, 661132.
  12. Campagnoli, A., Cheli, F., Savoini, G., Crotti, A., Pastori, A., and Dell’Orto, V. (2009), “Application of an electronic nose to detection of aflatoxins in corn,” Veterinary research communications, 33, 273–275.
  13. Canziani, A., Paszke, A., and Culurciello, E. (2016), “An analysis of deep neural network models for practical applications,” arXiv preprint arXiv:1605.07678.
  14. Chavez, R. A., Cheng, X., Herrman, T. J., and Stasiewicz, M. J. (2022), “Single kernel aflatoxin and fumonisin contamination distribution and spectral classification in commercial corn,” Food Control, 131, 108393.
  15. Chen, T. and Guestrin, C. (2016), “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794.
  16. De Girolamo, A., von Holst, C., Cortese, M., Cervellieri, S., Pascale, M., Longobardi, F., Catucci, L., Porricelli, A. C. R., and Lippolis, V. (2019), “Rapid screening of ochratoxin A in wheat by infrared spectroscopy,” Food Chemistry, 282, 95–100.
  17. EFSA (2013), “Aflatoxins (sum of B1, B2, G1, G2) in cereals and cereal-derived food products,” .
  18. Eskola, M., Kos, G., Elliott, C. T., Hajšlová, J., Mayar, S., and Krska, R. (2020), “Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’of 25%,” Critical reviews in food science and nutrition, 60, 2773–2789.
  19. FDA (2020), “Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed,” https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed#afla, Date Accessed: 05-11-2023.
  20. Femenias, A., Gatius, F., Ramos, A. J., Sanchis, V., and Marín, S. (2021), “Near-infrared hyperspectral imaging for deoxynivalenol and ergosterol estimation in wheat samples,” Food Chemistry, 341, 128206.
  21. Friedman, J. H. (2001), “Greedy function approximation: a gradient boosting machine,” Annals of statistics, 1189–1232.
  22. Gao, J., Zhao, L., Li, J., Deng, L., Ni, J., and Han, Z. (2021), “Aflatoxin rapid detection based on hyperspectral with 1D-convolution neural network in the pixel level,” Food Chemistry, 360, 129968.
  23. Ghilardelli, F., Barbato, M., and Gallo, A. (2022), “A preliminary study to classify corn silage for high or low mycotoxin contamination by using near infrared spectroscopy,” Toxins, 14, 323.
  24. Gobbi, E., Falasconi, M., Torelli, E., and Sberveglieri, G. (2011), “Electronic nose predicts high and low fumonisin contamination in maize cultures,” Food Research International, 44, 992–999.
  25. Guo, L., Ji, M., and Ye, K. (2020), “Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum,” BMC genomics, 21, 1–14.
  26. Han, Z. and Gao, J. (2019), “Pixel-level aflatoxin detecting based on deep learning and hyperspectral imaging,” Computers and Electronics in Agriculture, 164, 104888.
  27. Jha, S. N., Jaiswal, P., Kaur, J., and Ramya, H. (2021), “Rapid detection and quantification of aflatoxin B1 in milk using fourier transform infrared spectroscopy,” Journal of The Institution of Engineers (India): Series A, 102, 259–265.
  28. Jin, X., Jie, L., Wang, S., Qi, H. J., and Li, S. W. (2018), “Classifying wheat hyperspectral pixels of healthy heads and Fusarium head blight disease using a deep neural network in the wild field,” Remote Sensing, 10, 395.
  29. Johns, L. E., Bebber, D. P., Gurr, S. J., and Brown, N. A. (2022), “Emerging health threat and cost of Fusarium mycotoxins in European wheat,” Nature Food, 3, 1014–1019.
  30. Jubair, S., Tucker, J. R., Henderson, N., Hiebert, C. W., Badea, A., Domaratzki, M., and Fernando, W. (2021), “GPTransformer: A transformer-based deep learning method for predicting Fusarium related traits in barley,” Frontiers in plant science, 12, 761402.
  31. Kim, Y.-K., Baek, I., Lee, K.-M., Kim, G., Kim, S., Kim, S.-Y., Chan, D., Herrman, T. J., Kim, N., and Kim, M. S. (2023), “Rapid Detection of Single-and Co-Contaminant Aflatoxins and Fumonisins in Ground Maize Using Hyperspectral Imaging Techniques,” Toxins, 15, 472.
  32. Kos, G., Sieger, M., McMullin, D., Zahradnik, C., Sulyok, M., Öner, T., Mizaikoff, B., and Krska, R. (2016), “A novel chemometric classification for FTIR spectra of mycotoxin-contaminated maize and peanuts at regulatory limits,” Food Additives & Contaminants: Part A, 33, 1596–1607.
  33. Latham, R. L., Boyle, J. T., Barbano, A., Loveman, W. G., and Brown, N. A. (2023), “Diverse mycotoxin threats to safe food and feed cereals,” Essays in Biochemistry, EBC20220221.
  34. Leggieri, M. C., Lanubile, A., Dall’Asta, C., Pietri, A., and Battilani, P. (2020), “The impact of seasonal weather variation on mycotoxins: Maize crop in 2014 in northern Italy as a case study,” World Mycotoxin Journal, 13, 25–36.
  35. Leggieri, M. C., Mazzoni, M., Fodil, S., Moschini, M., Bertuzzi, T., Prandini, A., and Battilani, P. (2021), “An electronic nose supported by an artificial neural network for the rapid detection of aflatoxin B1 and fumonisins in maize,” Food Control, 123, 107722.
  36. Liakos, K. G., Busato, P., Moshou, D., Pearson, S., and Bochtis, D. (2018), “Machine learning in agriculture: A review,” Sensors, 18, 2674.
  37. Lippolis, V., Pascale, M., Cervellieri, S., Damascelli, A., and Visconti, A. (2014), “Screening of deoxynivalenol contamination in durum wheat by MOS-based electronic nose and identification of the relevant pattern of volatile compounds,” Food Control, 37, 263–271.
  38. Liu, C., Manstretta, V., Rossi, V., and Van der Fels-Klerx, H. (2018), “Comparison of three modelling approaches for predicting deoxynivalenol contamination in winter wheat,” Toxins, 10, 267.
  39. Liu, Y. and Wu, F. (2010), “Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment,” Environmental health perspectives, 118, 818–824.
  40. Logrieco, A., Battilani, P., Leggieri, M. C., Jiang, Y., Haesaert, G., Lanubile, A., Mahuku, G., Mesterházy, A., Ortega-Beltran, A., Pasti, M., et al. (2021), “Perspectives on global mycotoxin issues and management from the MycoKey Maize Working Group,” Plant disease, 105, 525–537.
  41. Ma, J., Guan, Y., Xing, F., Eltzov, E., Wang, Y., Li, X., and Tai, B. (2023), “Accurate and non-destructive monitoring of mold contamination in foodstuffs based on whole-cell biosensor array coupling with machine-learning prediction models,” Journal of Hazardous Materials, 449, 131030.
  42. Maragos, C. M. (2004), “Emerging technologies for mycotoxin detection,” Journal of Toxicology: Toxin Reviews, 23, 317–344.
  43. Marroquín-Cardona, A., Johnson, N., Phillips, T., and Hayes, A. (2014), “Mycotoxins in a changing global environment–a review,” Food and Chemical Toxicology, 69, 220–230.
  44. Mateo, E. M., Gómez, J. V., Tarazona, A., García-Esparza, M. Á., and Mateo, F. (2021), “Comparative analysis of machine learning methods to predict growth of F. sporotrichioides and production of T-2 and HT-2 toxins in treatments with ethylene-vinyl alcohol films containing pure components of essential oils,” Toxins, 13, 545.
  45. Mateo, E. M., Tarazona, A., Aznar, R., and Mateo, F. (2023), “Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. and their main mycotoxins,” International Journal of Food Microbiology, 387, 110054.
  46. Mateo, F., Gadea, R., Mateo, E. M., and Jiménez, M. (2011), “Multilayer perceptron neural networks and radial-basis function networks as tools to forecast accumulation of deoxynivalenol in barley seeds contaminated with Fusarium culmorum,” Food Control, 22, 88–95.
  47. Mavrommatis, A., Giamouri, E., Tavrizelou, S., Zacharioudaki, M., Danezis, G., Simitzis, P. E., Zoidis, E., Tsiplakou, E., Pappas, A. C., Georgiou, C. A., et al. (2021), “Impact of mycotoxins on animals’ oxidative status,” Antioxidants, 10, 214.
  48. McCulloch, W. S. and Pitts, W. (1943), “A logical calculus of the ideas immanent in nervous activity,” The bulletin of mathematical biophysics, 5, 115–133.
  49. Medina, A., Akbar, A., Baazeem, A., Rodriguez, A., and Magan, N. (2017), “Climate change, food security and mycotoxins: Do we know enough?” Fungal biology reviews, 31, 143–154.
  50. Milićević, D., Petronijević, R., Petrović, Z., Djinović-Stojanović, J., Jovanović, J., Baltić, T., and Janković, S. (2019), “Impact of climate change on aflatoxin M1 contamination of raw milk with special focus on climate conditions in Serbia,” Journal of the Science of Food and Agriculture, 99, 5202–5210.
  51. Montavon, G., Samek, W., and Müller, K.-R. (2018), “Methods for interpreting and understanding deep neural networks,” Digital signal processing, 73, 1–15.
  52. Natekin, A. and Knoll, A. (2013), “Gradient boosting machines, a tutorial,” Frontiers in neurorobotics, 7, 21.
  53. Niedbała, G., Kurasiak-Popowska, D., Stuper-Szablewska, K., and Nawracała, J. (2020), “Application of artificial neural networks to analyze the concentration of ferulic acid, deoxynivalenol, and nivalenol in winter wheat grain,” Agriculture, 10, 127.
  54. Oener, T., Thiam, P., Kos, G., Krska, R., Schwenker, F., and Mizaikoff, B. (2019), “Machine learning algorithms for the automated classification of contaminated maize at regulatory limits via infrared attenuated total reflection spectroscopy,” World mycotoxin journal, 12, 113–122.
  55. Ottoboni, M., Pinotti, L., Tretola, M., Giromini, C., Fusi, E., Rebucci, R., Grillo, M., Tassoni, L., Foresta, S., Gastaldello, S., et al. (2018), “Combining E-nose and lateral flow immunoassays (LFIAs) for rapid occurrence/co-occurrence aflatoxin and fumonisin detection in maize,” Toxins, 10, 416.
  56. Panagou, E. Z. and Kodogiannis, V. S. (2009), “Application of neural networks as a non-linear modelling technique in food mycology,” Expert Systems with Applications, 36, 121–131.
  57. Purchase, J., Donato, R., Sacco, C., Pettini, L., Rookmin, A. D., Melani, S., Artese, A., Purchase, D., and Marvasi, M. (2023), “The association of food ingredients in breakfast cereal products and fumonisins production: risks identification and predictions,” Mycotoxin Research, 1–11.
  58. Qiu, R., Yang, C., Moghimi, A., Zhang, M., Steffenson, B. J., and Hirsch, C. D. (2019), “Detection of fusarium head blight in wheat using a deep neural network and color imaging,” Remote Sensing, 11, 2658.
  59. Quinlan, J. R. (1986), “Induction of decision trees,” Machine learning, 1, 81–106.
  60. Rangarajan, A. K., Whetton, R. L., and Mouazen, A. M. (2022), “Detection of fusarium head blight in wheat using hyperspectral data and deep learning,” Expert Systems with Applications, 208, 118240.
  61. Redmon, J. and Farhadi, A. (2017), “YOLO9000: better, faster, stronger,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271.
  62. Renaud, J. B., Miller, J. D., and Sumarah, M. W. (2019), “Mycotoxin testing paradigm: Challenges and opportunities for the future,” Journal of AOAC International, 102, 1681–1688.
  63. Ribeiro, M. T., Singh, S., and Guestrin, C. (2016), “” Why should i trust you?” Explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1135–1144.
  64. Saha, D. and Manickavasagan, A. (2021), “Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review,” Current Research in Food Science, 4, 28–44.
  65. Shapley, L. S. et al. (1953), “A value for n-person games,” .
  66. Shen, F., Zhao, T., Jiang, X., Liu, X., Fang, Y., Liu, Q., Hu, Q., and Liu, X. (2019), “On-line detection of toxigenic fungal infection in wheat by visible/near infrared spectroscopy,” Lwt, 109, 216–224.
  67. Soares, R. R., Ricelli, A., Fanelli, C., Caputo, D., de Cesare, G., Chu, V., Aires-Barros, M. R., and Conde, J. P. (2018), “Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds,” Analyst, 143, 1015–1035.
  68. Srinivasan, R., Lalitha, T., Brintha, N., Sterlin Minish, T., Al Obaid, S., Alharbi, S. A., Sundaram, S., and Mahilraj, J. (2022), “Predicting the Growth of F. proliferatum and F. culmorum and the Growth of Mycotoxin Using Machine Learning Approach,” BioMed Research International, 2022.
  69. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014), “Dropout: a simple way to prevent neural networks from overfitting,” The journal of machine learning research, 15, 1929–1958.
  70. StatSoft, Inc. (2020), “STATISTICA (Data Analysis Software System), Version 7.1,” http://www.statsoft.com.
  71. Tarazona, A., Mateo, E. M., Gómez, J. V., Gavara, R., Jiménez, M., and Mateo, F. (2021a), “Machine learning approach for predicting Fusarium culmorum and F. proliferatum growth and mycotoxin production in treatments with ethylene-vinyl alcohol copolymer films containing pure components of essential oils,” International journal of food microbiology, 338, 109012.
  72. Tarazona, A., Mateo, E. M., Gómez, J. V., Romera, D., and Mateo, F. (2021b), “Potential use of machine learning methods in assessment of Fusarium culmorum and Fusarium proliferatum growth and mycotoxin production in treatments with antifungal agents,” Fungal biology, 125, 123–133.
  73. Teixido-Orries, I., Molino, F., Femenias, A., Ramos, A. J., and Marín, S. (2023), “Quantification and classification of deoxynivalenol-contaminated oat samples by near-infrared hyperspectral imaging,” Food Chemistry, 417, 135924.
  74. Tola, M. and Kebede, B. (2016), “Occurrence, importance and control of mycotoxins: A review,” Cogent Food & Agriculture, 2, 1191103. Torelli et al. (2012) Torelli, E., Firrao, G., Bianchi, G., Saccardo, F., and Locci, R. (2012), “The influence of local factors on the prediction of fumonisin contamination in maize,” Journal of the Science of Food and Agriculture, 92, 1808–1814. Van der Fels-Klerx et al. (2022) Van der Fels-Klerx, H., Liu, C., Focker, M., Montero-Castro, I., Rossi, V., Manstretta, V., Magan, N., and Krska, R. (2022), “Decision support system for integrated management of mycotoxins in feed and food supply chains,” World Mycotoxin Journal, 15, 119–133. Vapnik (1999) Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Torelli, E., Firrao, G., Bianchi, G., Saccardo, F., and Locci, R. (2012), “The influence of local factors on the prediction of fumonisin contamination in maize,” Journal of the Science of Food and Agriculture, 92, 1808–1814. Van der Fels-Klerx et al. (2022) Van der Fels-Klerx, H., Liu, C., Focker, M., Montero-Castro, I., Rossi, V., Manstretta, V., Magan, N., and Krska, R. (2022), “Decision support system for integrated management of mycotoxins in feed and food supply chains,” World Mycotoxin Journal, 15, 119–133. Vapnik (1999) Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Van der Fels-Klerx, H., Liu, C., Focker, M., Montero-Castro, I., Rossi, V., Manstretta, V., Magan, N., and Krska, R. (2022), “Decision support system for integrated management of mycotoxins in feed and food supply chains,” World Mycotoxin Journal, 15, 119–133. Vapnik (1999) Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  75. Torelli, E., Firrao, G., Bianchi, G., Saccardo, F., and Locci, R. (2012), “The influence of local factors on the prediction of fumonisin contamination in maize,” Journal of the Science of Food and Agriculture, 92, 1808–1814. Van der Fels-Klerx et al. (2022) Van der Fels-Klerx, H., Liu, C., Focker, M., Montero-Castro, I., Rossi, V., Manstretta, V., Magan, N., and Krska, R. (2022), “Decision support system for integrated management of mycotoxins in feed and food supply chains,” World Mycotoxin Journal, 15, 119–133. Vapnik (1999) Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Van der Fels-Klerx, H., Liu, C., Focker, M., Montero-Castro, I., Rossi, V., Manstretta, V., Magan, N., and Krska, R. (2022), “Decision support system for integrated management of mycotoxins in feed and food supply chains,” World Mycotoxin Journal, 15, 119–133. Vapnik (1999) Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  76. Van der Fels-Klerx, H., Liu, C., Focker, M., Montero-Castro, I., Rossi, V., Manstretta, V., Magan, N., and Krska, R. (2022), “Decision support system for integrated management of mycotoxins in feed and food supply chains,” World Mycotoxin Journal, 15, 119–133. Vapnik (1999) Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  77. Vapnik, V. (1999), The nature of statistical learning theory, Springer science & business media. Vaswani et al. (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  78. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017), “Attention is all you need,” Advances in neural information processing systems, 30. Wang et al. (2022a) Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  79. Wang, X., Bouzembrak, Y., Lansink, A. O., and van der Fels-Klerx, H. (2022a), “Application of machine learning to the monitoring and prediction of food safety: A review,” Comprehensive Reviews in Food Science and Food Safety, 21, 416–434. Wang et al. (2022b) Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  80. Wang, X., Bouzembrak, Y., Oude Lansink, A., and Van der Fels-Klerx, H. (2022b), “Designing a monitoring program for aflatoxin B1 in feed products using machine learning,” npj Science of Food, 6, 40. Whitaker (2003) Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  81. Whitaker, T. B. (2003), “Standardisation of mycotoxin sampling procedures: an urgent necessity,” Food control, 14, 233–237. Wu (2015) Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  82. Wu, F. (2015), “Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin J. 8, 137–142,” . Xie et al. (2022) Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  83. Xie, H., Wang, X., van der Hooft, J. J., Medema, M. H., Chen, Z.-Y., Yue, X., Zhang, Q., and Li, P. (2022), “Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspergillus species,” Journal of Hazardous Materials, 424, 127173. Zhao et al. (2017) Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  84. Zhao, X., Wang, W., Chu, X., Li, C., and Kimuli, D. (2017), “Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis,” Applied Sciences, 7, 90. Zheng and Casari (2018) Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  85. Zheng, A. and Casari, A. (2018), Feature engineering for machine learning: principles and techniques for data scientists, ” O’Reilly Media, Inc.”. Zhou et al. (2019) Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  86. Zhou, L., Zhang, C., Liu, F., Qiu, Z., and He, Y. (2019), “Application of deep learning in food: a review,” Comprehensive reviews in food science and food safety, 18, 1793–1811. Zingales et al. (2022) Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.
  87. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., and Caloni, F. (2022), “Climate change and effects on molds and mycotoxins,” Toxins, 14, 445.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.