Papers
Topics
Authors
Recent
Search
2000 character limit reached

Realtime Person Identification via Gait Analysis

Published 2 Apr 2024 in eess.SP and cs.CV | (2404.15312v1)

Abstract: Each person has a unique gait, i.e., walking style, that can be used as a biometric for personal identification. Recent works have demonstrated effective gait recognition using deep neural networks, however most of these works predominantly focus on classification accuracy rather than model efficiency. In order to perform gait recognition using wearable devices on the edge, it is imperative to develop highly efficient low-power models that can be deployed on to small form-factor devices such as microcontrollers. In this paper, we propose a small CNN model with 4 layers that is very amenable for edge AI deployment and realtime gait recognition. This model was trained on a public gait dataset with 20 classes augmented with data collected by the authors, aggregating to 24 classes in total. Our model achieves 96.7% accuracy and consumes only 5KB RAM with an inferencing time of 70 ms and 125mW power, while running continuous inference on Arduino Nano 33 BLE Sense. We successfully demonstrated realtime identification of the authors with the model running on Arduino, thus underscoring the efficacy and providing a proof of feasiblity for deployment in practical systems in near future.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 56 likes about this paper.