Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Facilitating Human Feedback for GenAI Prompt Optimization (2404.15304v1)

Published 29 Mar 2024 in cs.HC

Abstract: This study investigates the optimization of Generative AI (GenAI) systems through human feedback, focusing on how varying feedback mechanisms influence the quality of GenAI outputs. We devised a Human-AI training loop where 32 students, divided into two groups, evaluated AI-generated responses based on a single prompt. One group assessed a single output, while the other compared two outputs. Preliminary results from this small-scale experiment suggest that comparative feedback might encourage more nuanced evaluations, highlighting the potential for improved human-AI collaboration in prompt optimization. Future research with larger samples is recommended to validate these findings and further explore effective feedback strategies for GenAI systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: