Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Non-trivial fixed point of a $ψ^4_d$ fermionic theory, II. Anomalous exponent and scaling operators (2404.14904v1)

Published 23 Apr 2024 in math-ph, hep-th, and math.MP

Abstract: We consider the Renormalization Group (RG) fixed-point theory associated with a fermionic $\psi4_d$ model in $d=1,2,3$ with fractional kinetic term, whose scaling dimension is fixed so that the quartic interaction is weakly relevant in the RG sense. The model is defined in terms of a Grassmann functional integral with interaction $V*$, solving a fixed-point RG equation in the presence of external fields, and a fixed ultraviolet cutoff. We define and construct the field and density scale-invariant response functions, and prove that the critical exponent of the former is the naive one, while that of the latter is anomalous and analytic. We construct the corresponding (almost-)scaling operators, whose two point correlations are scale-invariant up to a remainder term, which decays like a stretched exponential at distances larger than the inverse of the ultraviolet cutoff. Our proof is based on constructive RG methods and, specifically, on a convergent tree expansion for the generating function of correlations, which generalizes the approach developed by three of the authors in a previous publication [A. Giuliani, V. Mastropietro, S. Rychkov, JHEP 01 (2021) 026].

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube