Papers
Topics
Authors
Recent
2000 character limit reached

The Geometry of the Set of Equivalent Linear Neural Networks (2404.14855v1)

Published 23 Apr 2024 in cs.LG and cs.CG

Abstract: We characterize the geometry and topology of the set of all weight vectors for which a linear neural network computes the same linear transformation $W$. This set of weight vectors is called the fiber of $W$ (under the matrix multiplication map), and it is embedded in the Euclidean weight space of all possible weight vectors. The fiber is an algebraic variety that is not necessarily a manifold. We describe a natural way to stratify the fiber--that is, to partition the algebraic variety into a finite set of manifolds of varying dimensions called strata. We call this set of strata the rank stratification. We derive the dimensions of these strata and the relationships by which they adjoin each other. Although the strata are disjoint, their closures are not. Our strata satisfy the frontier condition: if a stratum intersects the closure of another stratum, then the former stratum is a subset of the closure of the latter stratum. Each stratum is a manifold of class $C\infty$ embedded in weight space, so it has a well-defined tangent space and normal space at every point (weight vector). We show how to determine the subspaces tangent to and normal to a specified stratum at a specified point on the stratum, and we construct elegant bases for those subspaces. To help achieve these goals, we first derive what we call a Fundamental Theorem of Linear Neural Networks, analogous to what Strang calls the Fundamental Theorem of Linear Algebra. We show how to decompose each layer of a linear neural network into a set of subspaces that show how information flows through the neural network. Each stratum of the fiber represents a different pattern by which information flows (or fails to flow) through the neural network. The topology of a stratum depends solely on this decomposition. So does its geometry, up to a linear transformation in weight space.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.