Papers
Topics
Authors
Recent
2000 character limit reached

SkinGEN: an Explainable Dermatology Diagnosis-to-Generation Framework with Interactive Vision-Language Models (2404.14755v2)

Published 23 Apr 2024 in cs.MM, cs.AI, cs.CV, and cs.HC

Abstract: With the continuous advancement of vision LLMs (VLMs) technology, remarkable research achievements have emerged in the dermatology field, the fourth most prevalent human disease category. However, despite these advancements, VLM still faces explainable problems to user in diagnosis due to the inherent complexity of dermatological conditions, existing tools offer relatively limited support for user comprehension. We propose SkinGEN, a diagnosis-to-generation framework that leverages the stable diffusion(SD) model to generate reference demonstrations from diagnosis results provided by VLM, thereby enhancing the visual explainability for users. Through extensive experiments with Low-Rank Adaptation (LoRA), we identify optimal strategies for skin condition image generation. We conduct a user study with 32 participants evaluating both the system performance and explainability. Results demonstrate that SkinGEN significantly improves users' comprehension of VLM predictions and fosters increased trust in the diagnostic process. This work paves the way for more transparent and user-centric VLM applications in dermatology and beyond.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.