Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stochastic prior for non-parametric star-formation histories

Published 22 Apr 2024 in astro-ph.GA | (2404.14494v1)

Abstract: The amount of power contained in the variations in galaxy star-formation histories (SFHs) across a range of timescales encodes key information about the physical processes which modulate star formation. Modelling the SFHs of galaxies as stochastic processes allows the relative importance of different timescales to be quantified via the power spectral density (PSD). In this paper, we build upon the PSD framework and develop a physically-motivated, "stochastic" prior for non-parametric SFHs in the spectral energy distribution (SED)-modelling code Prospector. We test this prior in two different regimes: 1) massive, $z = 0.7$ galaxies with both photometry and spectra, analogous to those observed with the LEGA-C survey, and 2) $z = 8$ galaxies with photometry only, analogous to those observed with NIRCam on JWST. We find that it is able to recover key galaxy parameters (e.g. stellar mass, stellar metallicity) to the same level of fidelity as the commonly-used continuity prior. Furthermore, the realistic variability information incorporated by the stochastic SFH model allows it to fit the SFHs of galaxies more accurately and precisely than traditional non-parametric models. In fact, the stochastic prior is $\gtrsim 2\times$ more accurate than the continuity prior in measuring the recent star-formation rates (log SFR${100}$ and log SFR${10}$) of both the $z = 0.7$ and $z = 8$ mock systems. While the PSD parameters of individual galaxies are difficult to constrain, the stochastic prior implementation presented in this work allows for the development hierarchical models in the future, i.e. simultaneous SED-modelling of an ensemble of galaxies to measure their underlying PSD.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 0 likes about this paper.