Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mathematical Crystal Chemistry

Published 22 Apr 2024 in cond-mat.mtrl-sci | (2404.14181v3)

Abstract: Efficient heuristics have predicted many functional materials such as high-temperature superconducting hydrides, while inorganic structural chemistry explains why and how the crystal structures are stabilized. Here we develop the paired mathematical programming formalism for searching and systematizing the structural prototypes of crystals. The first is the minimization of the volume of the unit cell under the constraints of only the minimum and maximum distances between pairs of atoms. We show the capabilities of linear relaxations of inequality constraints to optimize structures by the steepest-descent method, which is computationally very efficient. The second is the discrete optimization to assign five kinds of geometrical constraints including chemical bonds for pairs of atoms. Under the constraints, the two object functions, formulated as mathematical programming, are alternately optimized to realize the given coordination numbers of atoms. This approach successfully generates a wide variety of crystal structures of oxides such as spinel, pyrochlore-$\alpha$, and $\mathrm{K}_2 \mathrm{NiF}_4$ structures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. A. R. Oganov, G. Saleh, and A. G. Kvashnin, eds., Computational Materials Discovery (The Royal Society of Chemistry, 2019).
  2. A. R. Oganov and C. W. Glass, The Journal of Chemical Physics 124, 244704 (2006).
  3. X. Liu, H. Niu, and A. R. Oganov, npj Computational Materials 7, 199 (2021).
  4. C. J. Pickard and R. J. Needs, Phys. Rev. Lett. 97, 045504 (2006).
  5. C. J. Pickard and R. J. Needs, Journal of Physics: Condensed Matter 23, 053201 (2011).
  6. T. Yokoyama, K. Ichikawa, and H. Naito, Crystal Growth & Design 24, 2168 (2024).
  7. L. Pauling, Journal of the American Chemical Society 51, 1010 (1929).
  8. A. F. Wells, Structural Inorganic Chemistry, Fifth Edition (Oxford University Press, 1984).
  9. T. C. Hales, Annals of Mathematics 162, 1065 (2005).
  10. W. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).
  11. F. Wooten, K. Winer, and D. Weaire, Phys. Rev. Lett. 54, 1392 (1985).
  12. F. Wooten and D. Weaire, Solid State Phys. 40, 1 (1987).
  13. G. Barkema and N. Mousseau, Phys. Rev. B 62, 4985 (2000).
  14. P. Keating, Phys. Rev. 145, 637 (1966).
  15. R. Koshoji and T. Ozaki, Phys. Rev. E 104, 024101 (2021).
  16. R. Koshoji and T. Ozaki, Journal of Physics Communications 6, 075002 (2022).
  17. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
  18. A. Togo and I. Tanaka, arXiv preprint arXiv:1808.01590  (2018).
  19. K. Momma and F. Izumi, Journal of Applied Crystallography 44, 1272 (2011).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 3 likes about this paper.