Papers
Topics
Authors
Recent
2000 character limit reached

Boosting Ordered Statistics Decoding of Short LDPC Codes with Simple Neural Network Models (2404.14165v5)

Published 22 Apr 2024 in cs.IT and math.IT

Abstract: Ordered statistics decoding has been instrumental in addressing decoding failures that persist after normalized min-sum decoding in short low-density parity-check codes. Despite its benefits, the high computational complexity of effective ordered statistics decoding has limited its application in complexity-sensitive scenarios. To mitigate this issue, we propose a novel variant of the ordered statistics decoder. This approach begins with the design of a neural network model that refines the measurement of codeword bits, utilizing iterative information from normalized min-sum decoding failures. Subsequently, a fixed decoding path is established, comprising a sequence of blocks, each featuring a variety of test error patterns. The introduction of a sliding window-assisted neural model facilitates early termination of the ordered statistics decoding process along this path, aiming to balance performance and computational complexity. Comprehensive simulations and complexity analyses demonstrate that the proposed hybrid method matches state-of-the-art approaches across various metrics, particularly excelling in reducing latency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, 1962.
  2. D. J. MacKay and R. M. Neal, “Near shannon limit performance of low density parity check codes,” Electron. Lett., vol. 32, no. 18, p. 1645, 1996.
  3. J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation of min-sum algorithm and its modifications for decoding low-density parity-check (ldpc) codes,” IEEE Trans. Commun, vol. 53, no. 4, pp. 549–554, 2005.
  4. M. Jiang, C. Zhao, L. Zhang, and E. Xu, “Adaptive offset min-sum algorithm for low-density parity check codes,” IEEE Commun. Lett., vol. 10, no. 6, pp. 483–485, 2006.
  5. E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear codes using deep learning,” in 2016 54th Annu. Conf. Commun., Control, and Comput. (Allerton).   IEEE, 2016, Conference Proceedings, pp. 341–346.
  6. E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Be’ery, “Deep learning methods for improved decoding of linear codes,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 119–131, 2018.
  7. F. Liang, C. Shen, and F. Wu, “An iterative bp-cnn architecture for channel decoding,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 144–159, 2018.
  8. L. Lugosch and W. J. Gross, “Learning from the syndrome,” in 2018 52nd Asilomar Conf. Signals, Syst., Comput.   IEEE, 2018, Conference Proceedings, pp. 594–598.
  9. M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika, and N. Wehn, “Database of Channel Codes and ML Simulation Results,” www.uni-kl.de/channel-codes, 2019.
  10. A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. i Amat, “Learned decimation for neural belief propagation decoders,” in 2021-2021 Int. Conf. Acoust., Speech and Signal Process. (ICASSP).   IEEE, 2021, Conference Proceedings, pp. 8273–8277.
  11. M. P. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp. 1379–1396, 1995.
  12. C. Yue, M. Shirvanimoghaddam, G. Park, O.-S. Park, B. Vucetic, and Y. Li, “Probability-based ordered-statistics decoding for short block codes,” IEEE Commun. Lett., vol. 25, no. 6, pp. 1791–1795, 2021.
  13. C. Choi and J. Jeong, “Fast and scalable soft decision decoding of linear block codes,” IEEE Commun. Lett., vol. 23, no. 10, pp. 1753–1756, 2019.
  14. B. Cavarec, H. B. Celebi, M. Bengtsson, and M. Skoglund, “A learning-based approach to address complexity-reliability tradeoff in os decoders,” in 2020 54th Asilomar Conf. Signals, Syst., and Comput.   IEEE, 2020, pp. 689–692.
  15. C. Yue, V. Miloslavskaya, M. Shirvanimoghaddam, B. Vucetic, and Y. Li, “Efficient decoders for short block length codes in 6g urllc,” IEEE Commun. Mag., vol. 61, no. 4, pp. 84–90, 2023.
  16. L. Yang, W. Chen, and L. Chen, “Reduced complexity ordered statistics decoding of linear block codes,” in 2022 IEEE/CIC Int. Conf. Commun. in China (ICCC Workshops).   IEEE, 2022, pp. 371–376.
  17. J. Liang, Y. Wang, S. Cai, and X. Ma, “A low-complexity ordered statistic decoding of short block codes,” IEEE Commun. Lett., vol. 27, no. 2, pp. 400–403, 2022.
  18. C. Yue, M. Shirvanimoghaddam, G. Park, O.-S. Park, B. Vucetic, and Y. Li, “Linear-equation ordered-statistics decoding,” IEEE Trans. Commu., vol. 70, no. 11, pp. 7105–7123, 2022.
  19. C. Choi and J. Jeong, “Fast soft decision decoding of linear block codes using partial syndrome search,” in 2020 IEEE Int. Symp. Inf. Theory (ISIT).   IEEE, 2020, pp. 384–388.
  20. J. Rosseel, V. Mannoni, I. Fijalkow, and V. Savin, “Decoding short ldpc codes via bp-rnn diversity and reliability-based post-processing,” IEEE Trans. Commun., vol. 70, no. 12, pp. 7830–7842, 2022.
  21. G. Li and X. Yu, “Deep learning based enhancement of ordered statistics decoding of ldpc codes,” arXiv:2307.06575, 2023.
  22. M. Baldi, N. Maturo, E. Paolini, and F. Chiaraluce, “On the use of ordered statistics decoders for low-density parity-check codes in space telecommand links,” EURASIP J. Wirel. Commun. Netw., vol. 2016, pp. 1–15, 2016.
  23. F. Chollet et al., “Keras,” https://keras.io, 2015.
  24. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980, 2014.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.