Quantum master equation for many-body systems: Derivation based on the Lieb-Robinson bound (2404.14067v1)
Abstract: The local Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) quantum master equation is a powerful tool for the study of open quantum many-body systems. However, its microscopic derivation applicable to many-body systems is available only in limited cases of weak internal couplings, and it has yet to be fully understood under what microscopic conditions the local GKSL equation is valid. We derive the local GKSL equation on the basis of the Lieb-Robinson bound, which provides an upper bound of the propagation of information in quantum many-body systems. We numerically test the validity of the derived local GKSL equation for a one-dimensional tight-binding fermion chain.
- A. J. Daley, Quantum trajectories and open many-body quantum systems, Advances in Physics 63, 77 (2014).
- S. Nakajima, On Quantum Theory of Transport Phenomena: Steady Diffusion, Progress of Theoretical Physics 20, 948 (1958).
- R. Zwanzig, Ensemble method in the theory of irreversibility, The Journal of Chemical Physics 33, 1338 (1960).
- R. K. Wangsness and F. Bloch, The dynamical theory of nuclear induction, Phys. Rev. 89, 728 (1953).
- A. G. Redfield, On the theory of relaxation processes, IBM Journal of Research and Development 1, 19 (1957).
- A. Redfield, The theory of relaxation processes, in Advances in Magnetic Resonance, Advances in Magnetic and Optical Resonance, Vol. 1, edited by J. S. Waugh (Academic Press, 1965) pp. 1–32.
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of n‐level systems, Journal of Mathematical Physics 17, 821 (1976).
- G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical Physics 48, 119 (1976).
- T. Prosen, Open XXZ spin chain: Nonequilibrium steady state and a strict bound on ballistic transport, Phys. Rev. Lett. 106, 217206 (2011).
- C. Mejia-Monasterio and H. Wichterich, Heat transport in quantum spin chains, The European Physical Journal Special Topics 151, 113 (2007).
- R. Steinigeweg, M. Ogiewa, and J. Gemmer, Equivalence of transport coefficients in bath-induced and dynamical scenarios, Europhysics Letters 87, 10002 (2009).
- D. Manzano, C. Chuang, and J. Cao, Quantum transport in d-dimensional lattices, New J. Phys. 18, 043044 (2016).
- H. Weimer, A. Kshetrimayum, and R. Orús, Simulation methods for open quantum many-body systems, Rev. Mod. Phys. 93, 015008 (2021).
- D. Poulin, Lieb-robinson bound and locality for general markovian quantum dynamics, Phys. Rev. Lett. 104, 190401 (2010).
- T. Shirai and T. Mori, Thermalization in open many-body systems based on eigenstate thermalization hypothesis, Phys. Rev. E 101, 042116 (2020).
- A. Levy and R. Kosloff, The local approach to quantum transport may violate the second law of thermodynamics, Europhysics Letters 107, 20004 (2014).
- S. Scali, J. Anders, and L. A. Correa, Local master equations bypass the secular approximation, Quantum 5, 451 (2021).
- M. Konopik and E. Lutz, Local master equations may fail to describe dissipative critical behavior, Phys. Rev. Res. 4, 013171 (2022).
- A. S. Trushechkin and I. V. Volovich, Perturbative treatment of inter-site couplings in the local description of open quantum networks, Europhysics Letters 113, 30005 (2016).
- A. Schnell, Global becomes local: Efficient many-body dynamics for global master equations (2023), arXiv:2309.07105 [quant-ph] .
- E. Lieb and D. Robinson, The finite group velocity of quantum spin systems, Communications in Mathematical Physics 28, 251 (1972).
- E. B. Davies, Markovian master equations, Communications in Mathematical Physics 39, 91 (1974).
- J. D. Cresser and C. Facer, Coarse-graining in the derivation of Markovian master equations and its significance in quantum thermodynamics (2017), arXiv:1710.09939 [quant-ph] .
- D. Farina and V. Giovannetti, Open-quantum-system dynamics: Recovering positivity of the Redfield equation via the partial secular approximation, Phys. Rev. A 100, 012107 (2019).
- C. Cohen-Tannoudji, Fluctuations in radiative processes, Physica Scripta 1986, 19 (1986).
- D. A. Lidar, Z. Bihary, and K. Whaley, From completely positive maps to the quantum Markovian semigroup master equation, Chemical Physics 268, 35 (2001).
- G. Schaller and T. Brandes, Preservation of positivity by dynamical coarse graining, Phys. Rev. A 78, 022106 (2008).
- G. Schaller, P. Zedler, and T. Brandes, Systematic perturbation theory for dynamical coarse-graining, Phys. Rev. A 79, 032110 (2009).
- E. Mozgunov and D. Lidar, Completely positive master equation for arbitrary driving and small level spacing, Quantum 4, 227 (2020).
- G. Kiršanskas, M. Franckié, and A. Wacker, Phenomenological position and energy resolving Lindblad approach to quantum kinetics, Phys. Rev. B 97, 035432 (2018).
- F. Nathan and M. S. Rudner, Universal Lindblad equation for open quantum systems, Phys. Rev. B 102, 115109 (2020).
- T. Becker, L.-N. Wu, and A. Eckardt, Lindbladian approximation beyond ultraweak coupling, Phys. Rev. E 104, 014110 (2021).
- T. Mori, Floquet states in open quantum systems, Annual Review of Condensed Matter Physics 14, 35 (2023).
- F. Nathan and M. S. Rudner, High accuracy steady states obtained from the Universal Lindblad Equation (2022), arXiv:2206.02917 [quant-ph] .
- T. Prosen, Third quantization: a general method to solve master equations for quadratic open fermi systems, New J. Phys. 10, 043026 (2008).
- T. Prosen and T. H. Seligman, Quantization over boson operator spaces, Journal of Physics A: Mathematical and Theoretical 43, 392004 (2010).
- T. Prosen and B. Žunkovič, Exact solution of markovian master equations for quadratic fermi systems: thermal baths, open xy spin chains and non-equilibrium phase transition, New J. Phys. 12, 025016 (2010).
- C. Guo and D. Poletti, Solutions for bosonic and fermionic dissipative quadratic open systems, Phys. Rev. A 95, 052107 (2017).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.