Papers
Topics
Authors
Recent
2000 character limit reached

A Geometric Perspective on Double Robustness by Semiparametric Theory and Information Geometry (2404.13960v1)

Published 22 Apr 2024 in math.ST and stat.TH

Abstract: Double robustness (DR) is a widely-used property of estimators that provides protection against model misspecification and slow convergence of nuisance functions. While DR is a global property on the probability distribution manifold, it often coincides with influence curves, which only ensure orthogonality to nuisance directions locally. This apparent discrepancy raises fundamental questions about the theoretical underpinnings of DR. In this short communication, we address two key questions: (1) Why do influence curves frequently imply DR "for free"? (2) Under what conditions do DR estimators exist for a given statistical model and parameterization? Using tools from semiparametric theory, we show that convexity is the crucial property that enables influence curves to imply DR. We then derive necessary and sufficient conditions for the existence of DR estimators under a mean squared differentiable path-connected parameterization. Our main contribution also lies in the novel geometric interpretation of DR using information geometry. By leveraging concepts such as parallel transport, m-flatness, and m-curvature freeness, we characterize DR in terms of invariance along submanifolds. This geometric perspective deepens the understanding of when and why DR estimators exist. The results not only resolve apparent mysteries surrounding DR but also have practical implications for the construction and analysis of DR estimators. The geometric insights open up new connections and directions for future research. Our findings aim to solidify the theoretical foundations of a fundamental concept and contribute to the broader understanding of robust estimation in statistics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. {barticle}[author] \bauthor\bsnmAmari, \bfnmShun-Ichi\binitsS.-I. (\byear1982). \btitleDifferential geometry of curved exponential families-curvatures and information loss. \bjournalThe Annals of Statistics \bvolume10 \bpages357–385. \endbibitem
  2. {barticle}[author] \bauthor\bsnmAmari, \bfnmShun-ichi\binitsS.-i. (\byear1985). \btitleDifferential-geometrical methods in statistics. \bjournalLecture Notes on Statistics \bvolume28 \bpages1. \endbibitem
  3. {bbook}[author] \bauthor\bsnmAmari, \bfnmShun-ichi\binitsS.-i. (\byear2016). \btitleInformation geometry and its applications \bvolume194. \bpublisherSpringer. \endbibitem
  4. {barticle}[author] \bauthor\bsnmAmari, \bfnmShun-ichi\binitsS.-i. and \bauthor\bsnmKawanabe, \bfnmMotoaki\binitsM. (\byear1997). \btitleInformation geometry of estimating functions in semi-parametric statistical models. \bjournalBernoulli \bpages29–54. \endbibitem
  5. {bbook}[author] \bauthor\bsnmAmari, \bfnmShun-ichi\binitsS.-i. and \bauthor\bsnmNagaoka, \bfnmHiroshi\binitsH. (\byear2000). \btitleMethods of information geometry \bvolume191. \bpublisherAmerican Mathematical Soc. \endbibitem
  6. {barticle}[author] \bauthor\bsnmBickel, \bfnmPeter J\binitsP. J. and \bauthor\bsnmKwon, \bfnmJaimyoung\binitsJ. (\byear2001). \btitleInference for semiparametric models: some questions and an answer. \bjournalStatistica Sinica \bpages863–886. \endbibitem
  7. {barticle}[author] \bauthor\bsnmChen, \bfnmHua-Yun\binitsH.-Y. (\byear2007). \btitleA semiparametric odds ratio model for measuring association. \bjournalBiometrics \bvolume63 \bpages413–421. \endbibitem
  8. {barticle}[author] \bauthor\bsnmEfron, \bfnmBradley\binitsB. (\byear1975). \btitleDefining the curvature of a statistical problem (with applications to second order efficiency). \bjournalThe Annals of Statistics \bpages1189–1242. \endbibitem
  9. {bbook}[author] \bauthor\bsnmHärdle, \bfnmWolfgang\binitsW., \bauthor\bsnmLiang, \bfnmHua\binitsH. and \bauthor\bsnmGao, \bfnmJiti\binitsJ. (\byear2000). \btitlePartially linear models. \bpublisherSpringer Science & Business Media. \endbibitem
  10. {bbook}[author] \bauthor\bsnmHernán, \bfnmMiguel A\binitsM. A. and \bauthor\bsnmRobins, \bfnmJames M\binitsJ. M. (\byear2020). \btitleCausal Inference: What If. \bpublisherBoca Raton: Chapman & Hall/CRC. \endbibitem
  11. {bbook}[author] \bauthor\bsnmKosorok, \bfnmMichael R\binitsM. R. (\byear2008). \btitleIntroduction to empirical processes and semiparametric inference. \bpublisherSpringer. \endbibitem
  12. {barticle}[author] \bauthor\bsnmKumon, \bfnmM\binitsM. and \bauthor\bsnmAmari, \bfnmS\binitsS. (\byear1983). \btitleGeometrical theory of higher-order asymptotics of test, interval estimator and conditional inference. \bjournalProceedings of the Royal Society of London. A. Mathematical and Physical Sciences \bvolume387 \bpages429–458. \endbibitem
  13. {barticle}[author] \bauthor\bsnmNewey, \bfnmWhitney K\binitsW. K. (\byear1990). \btitleSemiparametric efficiency bounds. \bjournalJournal of applied econometrics \bvolume5 \bpages99–135. \endbibitem
  14. {barticle}[author] \bauthor\bsnmRobins, \bfnmJames M\binitsJ. M. and \bauthor\bsnmRotnitzky, \bfnmAndrea\binitsA. (\byear2001). \btitleComment on the Bickel and Kwon article,“Inference for semiparametric models: Some questions and an answer”. \bjournalStatistica Sinica \bvolume11 \bpages920–936. \endbibitem
  15. {barticle}[author] \bauthor\bsnmRotnitzky, \bfnmAndrea\binitsA., \bauthor\bsnmSmucler, \bfnmEzequiel\binitsE. and \bauthor\bsnmRobins, \bfnmJames M\binitsJ. M. (\byear2021). \btitleCharacterization of parameters with a mixed bias property. \bjournalBiometrika \bvolume108 \bpages231–238. \endbibitem
  16. {barticle}[author] \bauthor\bsnmSmucler, \bfnmE\binitsE., \bauthor\bsnmRotnitzky, \bfnmA\binitsA. and \bauthor\bsnmRobins, \bfnmJM\binitsJ. (\byear2019). \btitleA unifying approach for doublyrobust l1 regularized estimation of causal contrasts. arXiv e-prints. \bjournalarXiv preprint arXiv:1904.03737. \endbibitem
  17. {barticle}[author] \bauthor\bsnmTchetgen Tchetgen, \bfnmEric J.\binitsE. J., \bauthor\bsnmRobins, \bfnmJames M\binitsJ. M. and \bauthor\bsnmRotnitzky, \bfnmAndrea\binitsA. (\byear2010). \btitleOn doubly robust estimation in a semiparametric odds ratio model. \bjournalBiometrika \bvolume97 \bpages171–180. \endbibitem
  18. {bbook}[author] \bauthor\bsnmTsiatis, \bfnmAnastasios A\binitsA. A. (\byear2006). \btitleSemiparametric theory and missing data. \bpublisherSpringer. \endbibitem
  19. {bbook}[author] \bauthor\bparticleVan der \bsnmVaart, \bfnmAad W\binitsA. W. (\byear2000). \btitleAsymptotic statistics \bvolume3. \bpublisherCambridge university press. \endbibitem
  20. {barticle}[author] \bauthor\bsnmVansteelandt, \bfnmStijn\binitsS. and \bauthor\bsnmJoffe, \bfnmMarshall\binitsM. (\byear2014). \btitleStructural nested models and G-estimation: the partially realized promise. \bjournalStatistical Science \bvolume29 \bpages707–731. \endbibitem
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.