Papers
Topics
Authors
Recent
2000 character limit reached

MultiFun-DAG: Multivariate Functional Directed Acyclic Graph (2404.13836v1)

Published 22 Apr 2024 in stat.ME

Abstract: Directed Acyclic Graphical (DAG) models efficiently formulate causal relationships in complex systems. Traditional DAGs assume nodes to be scalar variables, characterizing complex systems under a facile and oversimplified form. This paper considers that nodes can be multivariate functional data and thus proposes a multivariate functional DAG (MultiFun-DAG). It constructs a hidden bilinear multivariate function-to-function regression to describe the causal relationships between different nodes. Then an Expectation-Maximum algorithm is used to learn the graph structure as a score-based algorithm with acyclic constraints. Theoretical properties are diligently derived. Prudent numerical studies and a case study from urban traffic congestion analysis are conducted to show MultiFun-DAG's effectiveness.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.