On illposedness of the Hall and electron magnetohydrodynamic equations without resistivity on the whole space (2404.13790v1)
Abstract: It has been shown in our previous work that the incompressible and irresistive Hall- and electron-magnetohydrodynamic (MHD) equations are illposed on flat domains $M = \mathbb{R}k \times \mathbb{T}{3-k}$ for $0 \le k \le 2$. The data and solutions therein were assumed to be independent of one coordinate, which not only significantly simplifies the systems but also allows for a large class of steady states. In this work, we remove the assumption of independence and conclude strong illposedness for compactly supported data in $\mathbb{R}3$. This is achieved by constructing degenerating wave packets for linearized systems around time-dependent axisymmetric magnetic fields. A few main additional ingredients are: a more systematic application of the generalized energy estimate, use of the Bogovski\v{i} operator, and a priori estimates for axisymmetric solutions to the Hall- and electron-MHD systems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.