2000 character limit reached
    
  Hyperspaces of the double arrow (2404.13741v1)
    Published 21 Apr 2024 in math.GN
  
  Abstract: Let $\mathbb{A}$ and $\mathbb{S}$ denote the double arrow of Alexandroff and the Sorgenfrey line, respectively. We show that for any $n\geq 1$, the space of all unions of at most $n$ closed intervals of $\mathbb{A}$ is not homogeneous. We also prove that the spaces of non-trivial convergent sequences of $\mathbb{A}$ and $\mathbb{S}$ are homogeneous. This partially solves an open question of A. Arhangel'ski\v{i}. In contrast, we show that the space of closed intervals of $\mathbb{S}$ is homogeneous.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.