Optimized mechanical quadrature squeezing beyond the 3-dB limit via a gradient-descent algorithm
Abstract: The preparation of mechanical quadrature-squeezed states holds significant importance in cavity optomechanics because the squeezed states have extensive applications in understanding fundamental quantum mechanics and exploiting modern quantum technology. Here, we propose a reliable scheme for generating mechanical quadrature squeezing in a typical cavity optomechanical system via seeking optimal cavity-field driving pulses using the gradient-descent algorithm. We realize strong quadrature squeezing in a mechanical resonator that exceeds the 3-dB steady-state limit, even with a thermal phonon occupancy of 100. Furthermore, the mechanical squeezing can be ultrarapidly created within one mechanical oscillation period. We also obtain the optimal pulsed drivings associated with the created mechanical squeezings and analyze the mechanism for mechanical squeezing generation. This paper will promote the application of optimal quantum control in quantum optics and quantum information science.
- Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86(4) 1391–1452 URL https://link.aps.org/doi/10.1103/RevModPhys.86.1391
- Bose S, Jacobs K and Knight P L 1997 Phys. Rev. A 56(5) 4175–4186 URL https://link.aps.org/doi/10.1103/PhysRevA.56.4175
- Liao JÂ Q and Tian L 2016 Phys. Rev. Lett. 116(16) 163602 URL https://link.aps.org/doi/10.1103/PhysRevLett.116.163602
- Mancini S and Tombesi P 1994 Phys. Rev. A 49(5) 4055–4065 URL https://link.aps.org/doi/10.1103/PhysRevA.49.4055
- Qu K and Agarwal GÂ S 2014 New Journal of Physics 16 113004 URL https://dx.doi.org/10.1088/1367-2630/16/11/113004
- Liao JÂ Q and Law CÂ K 2011 Phys. Rev. A 83(3) 033820 URL https://link.aps.org/doi/10.1103/PhysRevA.83.033820
- Milburn G and Walls D 1981 Optics Communications 39 401–404 ISSN 0030-4018 URL https://www.sciencedirect.com/science/article/pii/0030401881902327
- Mari A and Eisert J 2009 Phys. Rev. Lett. 103(21) 213603 URL https://link.aps.org/doi/10.1103/PhysRevLett.103.213603
- Clerk AÂ A, Marquardt F and Jacobs K 2008 New Journal of Physics 10 095010 URL https://dx.doi.org/10.1088/1367-2630/10/9/095010
- Agarwal GÂ S and Huang S 2016 Phys. Rev. A 93(4) 043844 URL https://link.aps.org/doi/10.1103/PhysRevA.93.043844
- Kronwald A, Marquardt F and Clerk AÂ A 2013 Phys. Rev. A 88(6) 063833 URL https://link.aps.org/doi/10.1103/PhysRevA.88.063833
- Braunstein SÂ L and Pati AÂ K 2003 URL https://doi.org/10.1007/978-94-015-1258-9
- Drummond PÂ D and Ficek Z 2004 URL https://doi.org/10.1007/978-3-662-09645-1
- Scully MÂ O and Zubairy MÂ S 1997 URL https://doi.org/10.1017/CBO9780511813993
- Stefanatos D 2017 Quantum Science and Technology 2 014003 URL https://dx.doi.org/10.1088/2058-9565/aa629c
- Basilewitsch D, Koch CÂ P and Reich DÂ M 2019 Advanced Quantum Technologies 2 1800110 (Preprint https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201800110) URL https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201800110
- Dong D and Petersen IÂ R 2020 URL https://doi.org/10.1007/978-3-031-20245-2
- Agarwal GÂ S 2012 URL https://doi.org/10.1017/CBO9781139035170
- Vogel W and Welsch DÂ G 2006
- Park Y S and Wang H 2009 Nature Physics 5 489–493 ISSN 1745-2481 URL https://doi.org/10.1038/nphys1303
- Greiner W and Reinhardt J 1996 URL https://doi.org/10.1007/978-3-642-61485-9
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.