Isotope-shift factors with quantum electrodynamics effects for many-electron systems: A study of the nuclear charge radius of $^{26m}$Al
Abstract: A method for calculating the field shift contribution to isotope shifts in many-electron atoms, incorporating quantum electrodynamics (QED) effects, is introduced. We also implement the model QED approach to incorporate QED contribution to the nuclear recoil effect at the high-order correlation effects treatment level. The proposed computational scheme is used to revise the value of the root-mean-square (rms) nuclear charge radius of the isomer of aluminium-26, ${26m}$Al. This radius is important for the global analysis of the $V_{ud}$ element of the Cabibbo-Kobayashi-Maskawa matrix. The difference in mean-square nuclear charge radii of ${27}$Al and ${26m}$Al, obtained by combining the calculated atomic factors with recently measured isotope shift (IS) of the $3s23p~2P_{3/2} \to 3s24s~2S_{1/2}$ transition in Al, is $0.443(44)(19)~{\rm fm}2$, where the first and second uncertainties are experimental and theoretical ones, respectively. The latter is reduced by a factor of 4 with respect to the previous study. Using this value and the known value of the rms charge radius of ${27}$Al, the resultant value $R_c({26m}$Al) = 3.132(10)~fm is obtained. With the improved accuracy of the calculated IS factors the error in $R_c({26m}$Al) is now dominated by the experimental uncertainty. Similar revision of rms charge radii is made for the ${28}$Al, ${29}$Al, ${30}$Al, ${31}$Al and ${32}$Al isotopes using existing IS measurements. Additionally, atomic factors are computed for the $3s23p~2P_{3/2} \to 3s24s~2S_{1/2}$, $3s23p~2P_{1/2} \to 3s25s~2S_{1/2}$ and $3s23p~2P_{3/2} \to 3s25s~2S_{1/2}$ transitions in Al, which can be used in future experimental studies.
- J. C. Hardy and I. S. Towner, Phys. Rev. C 102, 045501 (2020).
- I. S. Towner and J. C. Hardy, Phys. Rev. C 66, 035501 (2002).
- I. S. Towner and J. C. Hardy, Phys. Rev. C 77, 025501 (2008).
- I. Angeli and K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).
- V. M. Shabaev, Theor. Math. Phys. 63, 588 (1985).
- C. W. P. Palmer, J. Phys. B: Atom. Mol. Phys. 20, 5987 (1987).
- V. M. Shabaev, Sov. J. Nucl. Phys. 47, 69 (1988).
- V. Shabaev and A. Artemyev, J. Phys. B: Atom. Mol. Phys. 27, 1307 (1994).
- J. Sapirstein and K. T. Cheng, Can. J. Phys. 86, 25 (2008).
- P. Indelicato, J. Phys. B: At. Mol. Opt. Phys. 52, 232001 (2019).
- V. M. Shabaev, in Comprehensive Computational Chemistry (First Edition), edited by M. Yáñez and R. J. Boyd (Elsevier, Oxford, 2024) pp. 94–128.
- S. A. Blundell, Phys. Rev. A 47, 1790 (1993).
- J. S. M. Ginges and J. C. Berengut, J. Phys. B 49, 095001 (2016).
- V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005).
- P. Pyykkö and L.-B. Zhao, J. Phys. B 36, 1469 (2003).
- C. Thierfelder and P. Schwerdtfeger, Phys. Rev. A 82, 062503 (2010).
- P. Indelicato and J. P. Desclaux, Phys. Rev. A 42, 5139 (1990).
- I. I. Tupitsyn and E. V. Berseneva, Opt. Spectrosc. 114, 682 (2013).
- L. V. Skripnikov, J. Chem. Phys. 154, 201101 (2021).
- V. M. Shabaev, Phys. Rep. 356, 119 (2002).
- M. Athanasakis-Kaklamanakis, S. G. Wilkins, L. V. Skripnikov, A. Koszorus, A. A. Breier, M. Au, I. Belosevic, R. Berger, M. L. Bissell, A. Borschevsky, A. Brinson, K. Chrysalidis, T. E. Cocolios, R. P. de Groote, A. Dorne, C. M. Fajardo-Zambrano, R. W. Field, K. T. Flanagan, S. Franchoo, R. F. G. Ruiz, K. Gaul, S. Geldhof, T. F. Giesen, D. Hanstorp, R. Heinke, T. A. Isaev, A. A. Kyuberis, S. Kujanpaa, L. Lalanne, G. Neyens, M. Nichols, L. F. Pasteka, H. A. Perrett, J. R. Reilly, S. Rothe, S. M. Udrescu, B. van den Borne, Q. Wang, J. Wessolek, X. F. Yang, and C. Zuelch, “Pinning down electron correlations in RaF via spectroscopy of excited states,” (2023), arXiv:2308.14862 [physics.atom-ph] .
- L. V. Skripnikov and A. E. Barzakh, Phys. Rev. C 109, 024315 (2024).
- V. A. Yerokhin, Phys. Rev. A 83, 012507 (2011).
- U. D. Jentschura, J. Phys. A 36, L229 (2003).
- K. Pachucki, Phys. Rev. A 48, 120 (1993).
- M. I. Eides and H. Grotch, Phys. Rev. A 56, R2507 (1997).
- V. M. Shabaev, J. Phys. B 26, 1103 (1993).
- I. I. Tupitsyn, G. B. Deyneka, and V. F. Bratzev, “hfd,” (1977–2002), hfd, a program for atomic finite-difference four-component Dirac-Hartree-Fock calculations on the base of the HFD code Bratzev et al. (1977).
- I. I. Tupitsyn, “hfdb,” (2003), hfdb, a program for atomic finite-difference four-component Dirac-Hartree-Fock-Breit calculations written on the base of the hfd code Bratzev et al. (1977).
- W. Johnson and G. Soff, At. Data Nucl. Data Tables 33, 405 (1985).
- P. J. Mohr, Atomic Data and Nuclear Data Tables 29, 453 (1983).
- M. Kállay and J. Gauss, J. Chem. Phys. 123, 214105 (2005).
- R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
- V. M. Shabaev, Phys. Rev. A 57, 59 (1998).
- K. Pachucki and H. Grotch, Phys. Rev. A 51, 1854 (1995).
- A. S. Yelkhovsky, “Recoil correction in the Dirac-Coulomb problem,” Report No. BIMP 94-27, Budker Institute of Nuclear Physics, Novosibirsk, 1994; e-print hep-th/9403095 (1994).
- B. K. Sahoo and B. Ohayon, Phys. Rev. A 103, 052802 (2021).
- K. G. Dyall, Theor. Chem. Acc. 135, 128 (2016).
- K. G. Dyall, Theor. Chem. Acc. 131, 1217 (2012).
- K. G. Dyall, Theor. Chem. Acc. 117, 491 (2007).
- L. V. Skripnikov, J. Chem. Phys. 153, 114114 (2020).
- “mrcc,” M. Kállay, P. R. Nagy, D. Mester, Z. Rolik, G. Samu, J. Csontos, J. Csóka, P. B. Szabó, L. Gyevi-Nagy, B. Hégely, I. Ladjánszki, L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas, P. D. Mezei, and á. Ganyecz: The mrcc program system: Accurate quantum chemistry from water to proteins, J. Chem. Phys. 152, 074107 (2020); mrcc, a quantum chemical program suite written by M. Kállay, P. R. Nagy, D. Mester, Z. Rolik, G. Samu, J. Csontos, J. Csóka, P. B. Szabó, L. Gyevi-Nagy, B. Hégely, I. Ladjánszki, L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas, P. D. Mezei, and Á. Ganyecz. See www.mrcc.hu.
- L. Visscher and K. G. Dyall, At. Data Nucl. Data Tables 67, 207 (1997).
- T. Fleig and L. V. Skripnikov, Symmetry 12, 498 (2020).
- V. Kaufman and W. C. Martin, J. Phys. Chem. Ref. Data. 20, 775 (1991).
- V. A. Yerokhin and V. M. Shabaev, Phys. Rev. A 60, 800 (1999).
- J. Sapirstein and K. T. Cheng, Phys. Rev. A 108, 042804 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.