Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Client-Centered Federated Learning for Heterogeneous EHRs: Use Fewer Participants to Achieve the Same Performance (2404.13318v4)

Published 20 Apr 2024 in cs.LG

Abstract: The increasing volume of electronic health records (EHRs) presents the opportunity to improve the accuracy and robustness of models in clinical prediction tasks. Unlike traditional centralized approaches, federated learning enables training on data from multiple institutions while preserving patient privacy and complying with regulatory constraints. In practice, healthcare institutions (i.e., hosts) often need to build predictive models tailored to their specific needs using federated learning. In this scenario, two key challenges arise: (1) ensuring compatibility across heterogeneous EHR systems, and (2) managing federated learning costs within budget constraints. To address these challenges, we propose EHRFL, a federated learning framework designed for building a cost-effective, host-specific predictive model using patient EHR data. EHRFL consists of two components: (1) text-based EHR modeling, which facilitates cross-institution compatibility without costly data standardization, and (2) a participant selection strategy based on averaged patient embedding similarity to reduce the number of participants without degrading performance. Experiments on multiple open-source EHR datasets demonstrate the effectiveness of both components. We believe our framework offers a practical solution for enabling healthcare institutions to build institution-specific predictive models under budgetary constraints.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 4 likes.