Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unambiguous discrimination of general quantum operations

Published 20 Apr 2024 in quant-ph | (2404.13317v1)

Abstract: The discrimination of quantum operations has long been an intriguing challenge, with theoretical research significantly advancing our understanding of the quantum features in discriminating quantum objects. This challenge is closely related to the discrimination of quantum states, and proof-of-principle demonstrations of the latter have already been realized using optical photons. However, the experimental demonstration of discriminating general quantum operations, including both unitary and non-unitary operations, has remained elusive. In general quantum systems, especially those with high dimensions, the preparation of arbitrary quantum states and the implementation of arbitrary quantum operations and generalized measurements are non-trivial tasks. Here, for the first time, we experimentally demonstrate the optimal unambiguous discrimination of up to 6 displacement operators and the unambiguous discrimination of non-unitary quantum operations. Our results demonstrate powerful tools for experimental research in quantum information processing and are expected to stimulate a wide range of valuable applications in the field of quantum sensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. A. Acín, “Statistical distinguishability between unitary operations,” Phys. Rev. Lett. 87, 177901 (2001).
  2. A. Chefles and M. Sasaki, “Retrodiction of generalized measurement outcomes,” Phys. Rev. A 67, 032112 (2003).
  3. A. S. Holevo, “Statistical decision theory for quantum systems,” Journal of multivariate analysis 3, 337 (1973).
  4. C. W. Helstrom and C. W. Helstrom, Quantum detection and estimation theory, Vol. 3 (Academic press New York, 1976).
  5. M. Mohseni, A. M. Steinberg,  and J. A. Bergou, “Optical realization of optimal unambiguous discrimination for pure and mixed quantum states,” Phys. Rev. Lett. 93, 200403 (2004).
  6. F. E. Becerra, J. Fan,  and A. Migdall, “Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states,” Nat. Commun. 4, 2028 (2013).
  7. S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook,  and S. Lloyd, “Advances in photonic quantum sensing,” Nat. Photonics 12, 724 (2018).
  8. C. H. Bennett and S. J. Wiesner, ‘‘Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
  9. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121 (1992).
  10. S. Izumi, J. S. Neergaard-Nielsen,  and U. L. Andersen, “Adaptive Generalized Measurement for Unambiguous State Discrimination of Quaternary Phase-Shift-Keying Coherent States,” PRX Quantum 2, 020305 (2021).
  11. M. Dušek, M. Jahma,  and N. Lütkenhaus, “Unambiguous state discrimination in quantum cryptography with weak coherent states,” Phys. Rev. A 62, 022306 (2000).
  12. N. Gisin, G. Ribordy, W. Tittel,  and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).
  13. S. Pirandola, “Quantum reading of a classical digital memory,” Phys. Rev. Lett. 106, 090504 (2011).
  14. M. Dall’Arno, A. Bisio, G. M. D’Ariano, M. Miková, M. Ježek,  and M. Dušek, “Experimental implementation of unambiguous quantum reading,” Phys. Rev. A 85, 012308 (2012).
  15. G. Ortolano, E. Losero, S. Pirandola, M. Genovese,  and I. Ruo-Berchera, “Experimental quantum reading with photon counting,” Sci. Adv. 7, eabc7796 (2021).
  16. S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science 321, 1463 (2008).
  17. S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola,  and J. H. Shapiro, “Quantum illumination with gaussian states,” Phys. Rev. Lett. 101, 253601 (2008).
  18. S. Guha and B. I. Erkmen, “Gaussian-state quantum-illumination receivers for target detection,” Phys. Rev. A 80, 052310 (2009).
  19. G. Qian, X. Xu, S.-A. Zhu, C. Xu, F. Gao, V. V. Yakovlev, X. Liu, S.-Y. Zhu,  and D.-W. Wang, “Quantum induced coherence light detection and ranging,” Phys. Rev. Lett. 131, 033603 (2023).
  20. R. Assouly, R. Dassonneville, T. Peronnin, A. Bienfait,  and B. Huard, “Quantum advantage in microwave quantum radar,” Nat. Phys. 19, 1418 (2023).
  21. A. Chefles, “Unambiguous discrimination between linearly independent quantum states,” Phys. Lett. A 239, 339 (1998).
  22. Y. Sun, J. A. Bergou,  and M. Hillery, “Optimum unambiguous discrimination between subsets of nonorthogonal quantum states,” Phys. Rev. A 66, 032315 (2002).
  23. A. Chefles, “Condition for unambiguous state discrimination using local operations and classical communication,” Phys. Rev. A 69, 050307 (2004).
  24. U. Herzog and J. A. Bergou, “Optimum unambiguous discrimination of two mixed quantum states,” Phys. Rev. A 71, 050301 (2005).
  25. G. Wang and M. Ying, “Unambiguous discrimination among quantum operations,” Phys. Rev. A 73, 042301 (2006).
  26. A. Chefles, A. Kitagawa, M. Takeoka, M. Sasaki,  and J. Twamley, “Unambiguous discrimination among oracle operators,” J. Phys. A: Mathematical and Theoretical 40, 10183 (2007).
  27. M. Sedlák, “Quantum theory of unambiguous measurements,” Acta Physica Slovaca 59, 653 (2009).
  28. M. Kleinmann, H. Kampermann,  and D. Bruß, “Unambiguous discrimination of mixed quantum states: Optimal solution and case study,” Phys. Rev. A 81, 020304 (2010).
  29. G. Waldherr, A. C. Dada, P. Neumann, F. Jelezko, E. Andersson,  and J. Wrachtrup, “Distinguishing between nonorthogonal quantum states of a single nuclear spin,” Phys. Rev. Lett. 109, 180501 (2012).
  30. M. Agnew, E. Bolduc, K. J. Resch, S. Franke-Arnold,  and J. Leach, “Discriminating single-photon states unambiguously in high dimensions,” Phys. Rev. Lett. 113, 020501 (2014).
  31. A. Laing, T. Rudolph,  and J. L. O’Brien, “Experimental quantum process discrimination,” Phys. Rev. Lett. 102, 160502 (2009).
  32. Q. Zhuang and S. Pirandola, “Ultimate limits for multiple quantum channel discrimination,” Phys. Rev. Lett. 125, 080505 (2020).
  33. Q. Zhuang, “Ultimate limits of approximate unambiguous discrimination,” Phys. Rev. Res. 2, 043276 (2020).
  34. K. DeBry, J. Sinanan-Singh, C. D. Bruzewicz, D. Reens, M. E. Kim, M. P. Roychowdhury, R. McConnell, I. L. Chuang,  and J. Chiaverini, “Experimental quantum channel discrimination using metastable states of a trapped ion,” Phys. Rev. Lett. 131, 170602 (2023).
  35. Y.-y. Zhao, N.-k. Yu, P. Kurzyński, G.-y. Xiang, C.-F. Li,  and G.-C. Guo, “Experimental realization of generalized qubit measurements based on quantum walks,” Phys. Rev. A 91, 042101 (2015).
  36. N. Bent, H. Qassim, A. A. Tahir, D. Sych, G. Leuchs, L. L. Sánchez-Soto, E. Karimi,  and R. W. Boyd, “Experimental realization of quantum tomography of photonic qudits via symmetric informationally complete positive operator-valued measures,” Phys. Rev. X 5, 041006 (2015).
  37. X. Wang, X. Zhan, Y. Li, L. Xiao, G. Zhu, D. Qu, Q. Lin, Y. Yu,  and P. Xue, “Generalized quantum measurements on a higher-dimensional system via quantum walks,” Phys. Rev. Lett. 131, 150803 (2023).
  38. Y. Feng, R. Duan,  and M. Ying, “Unambiguous discrimination between mixed quantum states,” Phys. Rev. A 70, 012308 (2004).
  39. L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C.-L. Zou, S. M. Girvin, L.-M. Duan,  and L. Sun, “Quantum error correction and universal gate set operation on a binomial bosonic logical qubit,” Nat. Phys. 15, 503 (2019).
  40. C. Shen, K. Noh, V. V. Albert, S. Krastanov, M. H. Devoret, R. J. Schoelkopf, S. M. Girvin,  and L. Jiang, “Quantum channel construction with circuit quantum electrodynamics,” Phys. Rev. B 95, 134501 (2017).
  41. W. Cai, J. Han, L. Hu, Y. Ma, X. Mu, W. Wang, Y. Xu, Z. Hua, H. Wang, Y. P. Song, J.-N. Zhang, C.-L. Zou,  and L. Sun, “High-efficiency arbitrary quantum operation on a high-dimensional quantum system,” Phys. Rev. Lett. 127, 090504 (2021).
  42. A. Chefles and S. M. Barnett, “Optimum unambiguous discrimination between linearly independent symmetric states,” Phys. Lett. A 250, 223 (1998).
  43. F. Kanitschar and C. Pacher, “Optimizing continuous-variable quantum key distribution with phase-shift keying modulation and postselection,” Phys. Rev. Appl. 18, 034073 (2022).
  44. J. Han, W. Cai, L. Hu, X. Mu, Y. Ma, Y. Xu, W. Wang, H. Wang, Y. P. Song, C.-L. Zou,  and L. Sun, “Experimental simulation of open quantum system dynamics via trotterization,” Phys. Rev. Lett. 127, 020504 (2021).
  45. M. M. Wilde, Quantum Information Theory (Cambridge University Press, Cambridge, 2017).
  46. J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
  47. S. Lloyd and L. Viola, “Engineering quantum dynamics,” Phys. Rev. A 65, 010101 (2001).
  48. S. Krastanov, V. V. Albert, C. Shen, C.-L. Zou, R. W. Heeres, B. Vlastakis, R. J. Schoelkopf,  and L. Jiang, “Universal control of an oscillator with dispersive coupling to a qubit,” Phys. Rev. A 92, 040303 (2015).
  49. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,  and S. J. Glaser, “Optimal control of coupled spin dynamics: design of nmr pulse sequences by gradient ascent algorithms,” J. Magn. Reson. 172, 296 (2005).
  50. P. de Fouquieres, S. Schirmer, S. Glaser,  and I. Kuprov, “Second order gradient ascent pulse engineering,” J. Magn. Reson. 212, 412 (2011).
  51. R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret,  and R. J. Schoelkopf, “Implementing a universal gate set on a logical qubit encoded in an oscillator,” Nat. Commun. 8, 94 (2017).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.